Electrodeposition is the process of cathodic deposition of metals, alloys, and other conducting materials from an electrolyte using an external potential (electric current) for the cation reduction process to occur at the working substrate. The deposition process is also known as electrolytic plating, electroplating, or simply plating. Electrodeposition is widely employed in a variety of applications ranging from coatings for wear and corrosion resistance to nanoscale feature fabrication for ultra-large-scale integration (ULSI). The deposition thickness may vary from few angstroms of uniformly deposited compact films to electroformed structures that are millimeters thick. Compared to competing vacuum deposition processes, electrodeposition has emerged as more environmentally friendly and cost-effective micro/nanofabrication method.


Current Distribution Chemical Mechanical Polishing Average Current Density Chemical Mechanical Polishing Process Pulse Plating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schlesinger, M. and Paunovic, M.: Modern Electroplating (eds.), 4th edition, Wiley Interscience, New York (2000)Google Scholar
  2. 2.
    Romankiw, L. T.; Croll, I.; and Hatzakis, M.: Batch fabricated thin film. Magnetic recording head. IEEE Trans. Magn. 6(4), 729 (1970)Google Scholar
  3. 3.
    Osaka T.: Electrochemical formation and microstructure in thin films for high functional devices. Electrochim. Acta. 42, 3015 (1997)Google Scholar
  4. 4.
    Romankiw, L. T.: A path: from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim. Acta. 42, 2985 (1997)CrossRefGoogle Scholar
  5. 5.
    Romankiw, L. T. and Turner, D. (eds.): Electrodeposition Technology: Theory and Practice, PV 86–17, Electrochemical Society Proceedings, New Jersey (1987)Google Scholar
  6. 6.
    Datta, M.; Shenoy, R. V.; Jahnes, C.; Andricacos, P. C.; Horkans, J.; Dukovic, J. O.; Romankiw, L. T.; Roeder, J.; Deligianni, H.; Nye, H.; Agarwala, B.; Tong, H. M.; and Totta, P. A.: Electrochemical fabrication of mechanically robust C4 s. J. Electrochem. Soc. 142, 3779 (1995)CrossRefGoogle Scholar
  7. 7.
    Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.; Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 (1998)CrossRefGoogle Scholar
  8. 8.
    Datta, M.: Electrochemical processing technologies in chip fabrication: Challenges and opportunities. Electrochim. Acta. 48, 2975 (2003)CrossRefGoogle Scholar
  9. 9.
    Seraphim, D. P.; Barr, D. E.; Chen, W. T.; Schmitt, G. P.; and Tummala, R. R.: In Microelectronic Packaging Handbook, Part III, 2nd edition, Tummala, R. R.; Rymaszewski, E. J.; and Klopfenstein, A. G. (eds.), Chapman and Hall, New York (1997)Google Scholar
  10. 10.
    Datta, M.: In New Trends in Electrochemical Technology, Microelectronic Packaging, Datta, M.; Osaka, T.; and Schultze, J. W. (eds.), CRC Press, New York, 3, 3 (2005)Google Scholar
  11. 11.
    Datta, M. and Landolt, D.: Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta. 45, 2535 (2000)CrossRefGoogle Scholar
  12. 12.
    Landolt D.: Electrochemical and materials science aspects of alloy deposition. Electrochim. Acta. 39, 1075 (1994)CrossRefGoogle Scholar
  13. 13.
    Ibl, N.: In Comprehensive Treatise of Electrochemistry. Yeager, E.; Bockris, J. O’M.; and Conway; B. (eds.), Plenum Press, New York 6(1), 133, 239, (1982)Google Scholar
  14. 14.
    Dukovic, J. O.: Feature-scale simulation of resist-patterned electrodeposition. IBM J. Res. Dev. 37(2), 125 (1993)CrossRefGoogle Scholar
  15. 15.
    Madore, C.; Matlosz, M.; and Landolt, D.: Blocking inhibitors in cathodic leveling. I. Theoretical analysis. J. Electrochem. Soc. 143(12), 3927 (1996)CrossRefGoogle Scholar
  16. 16.
    Kardos, O.: Current distribution on microprofiles, Part I, II, III. Plating, 61, 129, 229, 316 (1974)Google Scholar
  17. 17.
    Kruglikov, S. S.; Kudriavtsev, N. T.; Vorobiova, G. F.; and Antonov, A. Ya.: On the mechanism of levelling by addition agents in electrodeposition of metals. Electrochim. Acta. 10(3), 253 (1965)CrossRefGoogle Scholar
  18. 18.
    Dukovic, J. and Tobias, C. W.: Simulation of leveling in electrodeposition. J. Electrochem. Soc. 137, 3748 (1990)CrossRefGoogle Scholar
  19. 19.
    Seiter, H. and Fischer, H.: Electrocrystallization of metals. Z. Elektrochemie. 63, 249 (1959)Google Scholar
  20. 20.
    Winand, R.: Electrodeposition of metals and alloys-new results and perspectives. Electrochim. Acta. 39(8-9), 1109 (1994)CrossRefGoogle Scholar
  21. 21.
    Schimdt, W. U.; Alkire, R. C.; and Gewirth, A.: Mechanic [sic] study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images. J. Electrochem. Soc. 143(10), 3122 (1996)CrossRefGoogle Scholar
  22. 22.
    Armstrong, M. J. and Muller, R. H.: In situ scanning tunneling microscopy of copper deposition with Benzotriazole. J. Electrochem. Soc. 138(8), 2303 (1991)CrossRefGoogle Scholar
  23. 23.
    Kelly, J. J.; Tian, C.; and West, A. C.: Leveling and microstructural effects of additives for copper electrodeposition. J. Electrochem. Soc. 146, 2540 (1999)CrossRefGoogle Scholar
  24. 24.
    Ibl, N.: Some theoretical aspects of pulse electrolysis. Surface Technology. 10, 81 (1980)CrossRefGoogle Scholar
  25. 25.
    Chin, D. T.: Mass transfer and current-potential relation in pulse electrolysis. J. Electrochem. Soc. 130, 1657 (1983)CrossRefGoogle Scholar
  26. 26.
    Datta, M. and Landolt, D.: Experimental investigation of mass transport in pulse plating. Surface Technol. 25, 97 (1985)CrossRefGoogle Scholar
  27. 27.
    Pesco, A. M. and Cheh, H. Y.: The current distribution within plated through-holes. J. Electrochem. Soc. 136(2), 408 (1989)CrossRefGoogle Scholar
  28. 28.
    Wan, H. H.; Chang, R. Y.; and Yang, W. L.: Current distribution in a jet through-hole system during periodic electrolysis. J. Electrochem. Soc. 140(5), 1380 (1993)CrossRefGoogle Scholar
  29. 29.
    Yung, E. K.; Romankiw, L. T.; and Alkire, R. C.: Plating of copper into through-holes and vias. J. Electrochem. Soc. 136(1), 206 (1989)CrossRefGoogle Scholar
  30. 30.
    Dini, J. W.: In Modern Electroplating. Schlesinger, M.; and Paunovic, M.: (eds.), 4th edition, Wiley Interscience, New York, 61 (2000)Google Scholar
  31. 31.
    Winnad, R.: Electrodeposition of metals and alloys-new results and perspectives. Electrochim. Acta. 39, 1091 (1994)CrossRefGoogle Scholar
  32. 32.
    Donepudi, V. S.; Venkatachalapathy, R.; Ozemoyah, P. O.; Johnson, C. S.; and Prakash, J.: Electrodeposition of copper from sulfate electrolytes: Effects of Thiourea on resistivity and electrodeposition mechanism of copper. Electrochem. Solid-State Lett. 4(2), C, 13 (2001)CrossRefGoogle Scholar
  33. 33.
    Landolt, D.: Electrodeposition science and technology in the last quarter of the twentieth century. J. Electrochem. Soc. 149(3), S, 9 (2002)CrossRefGoogle Scholar
  34. 34.
    Moffat, T. P.; Bonewich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; and Josell, D.: Superconformal electrodeposition of copper in 500–90 nm features. J. Electrochem. Soc. 147(12), 4524 (2000)CrossRefGoogle Scholar
  35. 35.
    Cabral, C.; Andricacos, P. C.; Cignac, L. M.; and Noyan, I. C.: Room temperature annealing of damascene plated Cu chip metallization. Adv. Metallization Conf. Proc., ULSI XIV, 81 (1998)Google Scholar
  36. 36.
    Dubin, V. M.; Simka, H. S.; Shankar, S.; Moon, P.; Marieb, T.; and Datta, M.: In New trends in electrochemical technology, microelectronic packaging. Datta, M.; Osaka, T.; and Schultze, J. W. (eds.), CRC Press, New York. 3, 31 (2005)Google Scholar
  37. 37.
    Moffat, T. P.; Wheeler, D.; Huber, W. H.; and Josell, D.: Superconformal electrodeposition of copper. Electrochem. & Solid-State Lett. 4, C26 (2001)CrossRefGoogle Scholar
  38. 38.
    Josell, D.; Wheeler, D.; Huber, W. H.; Bonevich, J. E.; and Moffat, T. P.: A simple equation for predicting superconformal electrodeposition in submicrometer trenches. J. Electrochem. Soc. 148, C767 (2001)CrossRefGoogle Scholar
  39. 39.
    Wheeler, D.; Josell, D.; and Moffat, T. P.: Modeling of superconformal electrodeposition using the level set method. J. Electrochem. Soc. 150, C302 (2003)CrossRefGoogle Scholar
  40. 40.
    West, A. C.; Mayer, S.; and Reid, J.: A superfilling model that predicts bump formation. Electrochem. & Solid-State Lett. 4, C50 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cooligy Inc.Mountain ViewUSA

Personalised recommendations