Skip to main content

Emerging Nanoscale Interconnect Processing Technologies: Fundamental and Practice

  • Chapter
  • First Online:
Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Abstract

The prospects for Gigascale integration and beyond are hindered, in the near term, by increasingly higher RC delays in global and semi-global electrical interconnect systems. Long-term, signal transmission delays are projected to become significantly more challenging due to fundamental limits imposed by the basic laws of physics. As feature sizes shrink below the mean free path for electron scattering in conventional metal wires, surface scattering, which is defined as the scattering of electron waves from the boundaries of ultra narrow conductors, severely hinders electronic conductivity and stands as a major roadblock to Moore’s Law at the most fundamental level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelstein, D.; Heidenreich, J.; Goldblatt, R. D.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Wachnik, R.; Rathore, H.; Luce, S.; and Slattery, J.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology. Tech. Digest IEEE, International Electron Devices Meeting, 773–776 (1997)

    Google Scholar 

  2. Goldblatt, R. D.; Agarawala, B.; Anand, M. B.; Barth, E. P.; Biery, G. A.; Chen, Z. G.; Cohen, S.; Connolly, J. B.; Cowley, A.; Dalton, T.; Das, S. K.; Davis, C. R.; Deutsch, A.; DeWan, C.; Edelstein, D. C.; Emmi, P. A.; Faltermeier, C. G.; Fitzsimmons, J. A.; Hedrick, J.; Heidenreich, J. E.; Hu, C. K.; Hummel, J. P.; Jones, P.; Kaltalioglu, E.; Kastenmeier, B. E.; Krishnan, M.; Landers, W. F.; Liniger, E.; Liu, J.; Lustig, N. E.; Malhotra, S.; Manger, D. K.; McGahay, V.; Mih, R.; Nye, H. A.; Purushothaman, S.; Rathore, H. A.; Seo, S. C.; Shaw, T. M.; Simon, A. H.; Spooner, T. A.; Stetter, M.; Wachnik, R. A.; and Ryan, J. G.: A High Performance 0.13 pm Copper BEOL Technology with Low-k Dielectric. Presentation at the International Interconnect Technology Conference, Burlingame, CA (2000)

    Google Scholar 

  3. El-Kareh, B.: Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishers, Boston, 552 (1995)

    Google Scholar 

  4. Singer, P.: Changing the Promise of Faster Chips. Semicond. Int. 11, 52 (1994)

    Google Scholar 

  5. Hu, C.-K.; Luther, B.; Kaufman, F. B.; Hummel, J.; Uzoh, C.; and Pearson, D. J.: Copper interconnection integration and reliability. Thin Solid Films 262, 84 (1995)

    Article  CAS  Google Scholar 

  6. Kaanta, C. W.; Bombardier, S. G.; Cote, W. J.; Hill, W. R.; Kerszykowski, G.; Landis, H. S.; Poindexter, D. J.; Pollard, C. W.; Ross, G. H.; Ryan, J. G.; Wolff, S.; and Cronin, J. E.: Dual-Damascene: a ULSI wiring technology. Proceedings of the 8th International VLSI Multilevel Interconnection Conference, 144 (1991)

    Google Scholar 

  7. Zhu, Y.: Integration of Atomic Layer Deposition Tantalum Nitride and Platinum with Electrochemical Deposition of Copper for Interconnect Technology, Ph.D. Thesis, College of Nanoscale Science and Engineering of the University at Albany-SUNY, (2006)

    Google Scholar 

  8. Lee, B.: Electroless CoWP boosts copper reliability, device performance. Semicond. Int. 7, 95 (2004)

    Google Scholar 

  9. Ritala, M. and Leskela, M.: In Handbook of Thin film Materials. Nalwa, H., Ed. Deposition and Processing of Thin Films, Academic Press 1, 103 (2002)

    Google Scholar 

  10. Ramm, P.; Klumpp, A.; Merkel, R.; Weber, J.; Wieland, R.; Ostmann A.; and Wolfe, J.: 3D System Integration Technologies. Mat. Res. Soc.766, E5.6.1 (2003)

    Google Scholar 

  11. Fukushima, T.; Yamada, Y.; Kikuchi, H.; and Koyanagi, M.: New 3D Integration technology using chip to wafer bonding to achieve ultimate super-chip integration. Jap. J. Appl. Phys. 45(4B), 3030–3035, (2006)

    Article  CAS  Google Scholar 

  12. Niklaus, F.; Stemme, G.; Lu, J.-Q.; and Gutmann, R. J.: Adhesive wafer bonding. J. Appl. Phys. 99, 031101-01-031101-28 (2006)

    Article  Google Scholar 

  13. Islam, R.; Brubaker, C.; Lindner P.; and Schaefer, C.: Wafer Level Packaging and 3D Interconnect for IC Technology. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 212–217 (2002)

    Google Scholar 

  14. Xu, B.; Gracias, A.; Tokranova, N.; and Castracane, J.: Wafer Bonding for 3D Integration of MEMS/CMOS. to be published, MOEMS and Miniaturized Systems, (2006)

    Google Scholar 

  15. Fletcher, C.; Skele, M.; and Castracane, J.: Recent Developments in Vertically Integrated Sensor Arrays. Proceedings-GOMAC, (2005)

    Google Scholar 

  16. Reichl, H. and Ramm, P.: 3D System Integration. Fraunhofer IZM Bulletin, (2006); Wieland, R.; Ramm, P.; and Schulz, S.:  Fraunhofer IZM Annual Report, 115 (2002); Ramm, P.; Klumpp, A.; Merkel, R.; Weber, J.; Weiland, R; Ostmann, A.; and Wolf, J.: 3D system integration technologies. Proc. Mat. Res. Soc. Symp. 766, 3 (2003)

    Google Scholar 

  17. Pascual, D.: Fabrication and Assembly of 3D MEMS Devices. Solid State Technol. 48, 22 (2005)

    Google Scholar 

  18. Alexe, M. and Gosele, U.: Wafer Bonding Applications and Technology, Springer-Verlag, Berlin, (2004)

    Google Scholar 

  19. Iyer, S. S. and Auberton-Herve, A. J.: Silicon Wafer Bonding Technology for VLSI and MEMS, INSPEC, London, (2002)

    Google Scholar 

  20. Heath, J.: The Bridge (National Academy of Engineering) 33(4), 197 (2003)

    Google Scholar 

  21. Li, H. J.; Ly, W. G.; Li, J. J.; Bai, X. D.; and Gu, C. Z.: Multichannel Ballistic Transport in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 95, 086601 (2005)

    Article  CAS  Google Scholar 

  22. Kaloyeros, A. E.; Dunn, K. A; Carlsen A. T.; and Topol, A. W.: Carbon Nanotube Interconnects invited article for the Marcel Dekker Encyclopedia of NanoScience and NanoTechnology. Schwarz, J. A.; Contescu, C. I.; and Putyera, K.Eds. 1, 435–446 (2004)

    Google Scholar 

  23. Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354(6348), 56 (1991)

    Article  CAS  Google Scholar 

  24. Dresselhaus, M. S.; Dresselhaus, G.; and Eklund, P. C.: Science of Fullerenes and Carbon Nanotubes; Academic Press.; San Diego, US (1996)

    Google Scholar 

  25. Ajayan, P. M. and Ebbesen, T. W.: Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025 (1997)

    Article  CAS  Google Scholar 

  26. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; and Avouris, Ph.: Single and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447 (1998)

    Article  CAS  Google Scholar 

  27. Tans, S. J.; Verschueren, R. M.; and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)

    Article  CAS  Google Scholar 

  28. Charlier, J.-C.; and Iijima, S.: Electronic properties, junctions, and defects of carbon nanotubes. In Growth mechanisms of Carbon Nanotubes, Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph., Eds. Topics A Physics; Springer-Verlag Heidelberg, Berlin, 80, 55 (2001)

    Chapter  Google Scholar 

  29. Ebbesen, T. W. and Ajayan, P. M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992)

    Article  CAS  Google Scholar 

  30. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao A.; and Wang, G.: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996)

    Article  CAS  Google Scholar 

  31. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; and Prevencio, P. N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)

    Article  CAS  Google Scholar 

  32. Collins, P. G.; Arnold, Ml S.; and Avouirs, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706 (2001)

    Article  CAS  Google Scholar 

  33. Kaloyeros, A. E; Dunn, K. A; Carlsen, A. T.; and Topol, A. W.: Carbon Nanotube Interconnects. In Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, 435 (2003)

    Google Scholar 

  34. Iijima, S. and Ichihashi, ST.: Single-shell carbon nanotubes of 1-nm diameter. Nature (London) 363(6430), 603 (1993)

    Article  CAS  Google Scholar 

  35. Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquea, J.; and Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London) 363(6430), 605 (1993)

    Article  CAS  Google Scholar 

  36. Ajayan, P. M.; Lambert, J. M.; Bernier, P.; Barbedette, L.; Colliex, C.; and Planeix, J. M.: Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis. Chem. Phys. Lett. 215(5), 509 (1993)

    Article  CAS  Google Scholar 

  37. Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; and Dai, H.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878 (1998)

    Article  CAS  Google Scholar 

  38. Saito, R.; and Dresselhaus, M. S.; and  Dresselhaus, M. S.: Electronic structure of double-layer graphene tubules. J. Appl. Phys. 73(2), 494 (1993)

    Article  CAS  Google Scholar 

  39. Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kardatos, K.; Hsu, W. K.; Hare, J. P.; Townshend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; and Walton D. R. M.: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997)

    Article  CAS  Google Scholar 

  40. Guo, T.; Jin, C.-M.; and Smalley, R. E.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49 (1995)

    Article  CAS  Google Scholar 

  41. Louie, S. G.: Electronic properties, junctions, and defects of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 113 (2001)

    Chapter  Google Scholar 

  42. Stahl, H.: Electronic transport in ropes of single wall carbon nanotubes. In Dissertation approved by the Faculty for Mathematics, Informatics and Natural Sciences at the Aachen University of Technology (2000)

    Google Scholar 

  43. Tans, S. J.; Devoret, M. H.; Dai, H., Thess, A. Smalley, R. E.; Geerligs, L. J.; and Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature (London) 386(6624), 474 (1997)

    Article  CAS  Google Scholar 

  44. Bockrath M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; and Smalley, R. E.: Single-electron transport in ropes of carbon nanotubes. Science 275(5308), 1922 (1997)

    Article  CAS  Google Scholar 

  45. Yakobson, Boris I. and Avouris, Ph.: Mechanical properties of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds; Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 287 (2001)

    Chapter  Google Scholar 

  46. Wong, E. W.; Sheehan, P. E.; and Lieber, C. M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997)

    Article  CAS  Google Scholar 

  47. Yu, M. F.; Lourie, O.; Dyer, M.; Moloni, K.; and Rouff, R. S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000)

    Article  CAS  Google Scholar 

  48. Dresselhaus, M. S. and Endo, M.: Relation of carbon nanotubes to other carbon materials. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 11 (2001)

    Chapter  Google Scholar 

  49. Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; and Rubio, A.: Mechanical response of singlewalled carbon nanotubes in polymer nanocomposites. Adv. Mater. 12, 750 (2000)

    Article  CAS  Google Scholar 

  50. Yakobson, B. I.; Brabec, C. J.; and Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)

    Article  CAS  Google Scholar 

  51. Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; and Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420), 522 (1999)

    Article  Google Scholar 

  52. Fischer, J. E.; Dai, H.; Thess, A.; Lee, R.; N. Hanjani, M.; Dehaas, D. L.; and Smalley R. E.: Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, R4921 (1997)

    Article  CAS  Google Scholar 

  53. Frank, S.; Poncharal, P.; Wang, Z. L.; and de Heer, W. A.: Carbon nanotube quantum resistors. Science 280, 1744 (1998)

    Article  CAS  Google Scholar 

  54. Hertel, T; Walkup, R. E; and Avpuris, P: Deformation of carbon nanotubes by surface van der Walls forces. Phys. Rev. B 58(20), 13870 (1998)

    Article  CAS  Google Scholar 

  55. Fuhrer, M. S.; Nygård, J.; Shih, L.; Ferero, M.; Yoon, Y.-G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; and McEuen, P. L.: Crossed nanotube junctions. Science 288 (5465), 494 (2000)

    Article  CAS  Google Scholar 

  56. Kane, C. L.; and Mele, E. J.: Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997)

    Article  CAS  Google Scholar 

  57. Terrones, M.; Banhart, F.; Grobert, N.; Charlier, J.-C.; Terrones H.; and Ajayan, P. M.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505-1 (2002)

    Article  CAS  Google Scholar 

  58. Stahl, H.; Appenzeller, J.; Martel, R.; and Avouris, Ph.: Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000)

    Article  CAS  Google Scholar 

  59. Farró, L. and Schönenberger, C.: Physical properties of multi-wall nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin, 80, 329 (2001)

    Chapter  Google Scholar 

  60. Vajtai, R.; Wei, B. Q.; Zhang, Z. J.; Jung, Y.; Ramanath G.; and Ajayan, P. M.: Building carbon nanotubes and their smart architecture. Smart Mater. Struct.11, 691 (2002)

    Article  CAS  Google Scholar 

  61. Scuseria, G. E.: The equilibrium structures of giant fullerenes: Faceted or spherical shape? An ab initio Hartree-Fock study. Chem. Phys. Lett. 195, 534 (1992)

    Article  CAS  Google Scholar 

  62. Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; and Cohen, M. L.: Pure carbon nanoscale devices: Nanotube heterojunctions. Phys. Rev. Lett. 76(6-7), 971 (1996)

    Article  CAS  Google Scholar 

  63. Menon, M.; and Srivastava, D.: Carbon nanotube t junctions: Nanoscale metal semiconductor metal contact devices. Phys. Rev. Lett. 79(22), 4453 (1997)

    Article  CAS  Google Scholar 

  64. Yao Z.; Postma, H. W. Ch.; Balents, L.; and Dekker, C.: Carbon nanotube intermolecular junctions. Nature (London) 402, 273 (1999)

    Article  CAS  Google Scholar 

  65. Choi W. B. and Lee, Y. H.: Carbon nanotube and its application to nanoelectronics. Industrial Applications of Electron Microscopy; Li, Z. Ed., Marcel Dekker, New York, Chapter 14, 614 (2002)

    Google Scholar 

  66. Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; and Dai, H. J.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998)

    Article  CAS  Google Scholar 

  67. Tans, T. J.; Verschueren, R. M.; and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)

    Article  CAS  Google Scholar 

  68. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph.: Single and multi wall nanotube field effect transistors. Appl. Phys. Lett. 73(17), 2447 (1998)

    Article  CAS  Google Scholar 

  69. Wei, B.-Q.; Kohler-Redlich, P.; Bader, U.; Heiland, B.; Spolenak, R.; Arzt E.; Ruhle, M.: Selective specimen preparation for TEM observation of the cross section of individual carbon nanotube/metal junctions. Ultramicroscopy 85(2) 93 (2000)

    Article  CAS  Google Scholar 

  70. Kaloyeros, A. E, Welch, J.; Castracane J.; Oktyabrsky, S.; Geer, R.; and Dovidenko, K.: Interconnect Nanotechnology. Overarching Concepts and Demonstration Vehicles. Annual review of the Interconnect Focus Center 2002, Atlanta, GA, (2002)

    Google Scholar 

  71. Sagnes, M.; Broto, J.-M.; Raquet, B.; Ondarçuhu, T.; Laurent, Ch.; Flahaut, E.; Vieu, Ch.; and Carcenac, F.: Alignment and nano-connections of isolated carbon nanotubes. Microelectron. Eng. 67–68, 683 (2003)

    Article  Google Scholar 

  72. Austin, D. W.; Puretzky, A. A; Geohegan, D. B.; Britt, P. F.; Guillorn M. A.; and Simpson, M. L.: The electrodeposition of metal at metal/carbon nanotube junctions. Chem. Phys. Lett. 361, 525 (2002)

    Article  CAS  Google Scholar 

  73. Boulas C.; Davidovits, J. V.; Rondelez, F.; and Vuillaume, D.: Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797 (1996)

    Article  CAS  Google Scholar 

  74. Mujica, V. and Ratner, M. A.: In Handbook of Nanoscience, Engineering, and Technology. Goddard III W. A. et al., eds. CRC Press, Boca Raton, Fla. (2002)

    Google Scholar 

  75. Rochefort, A.; Martel, R.; and Avouris, P.: Electrical Switching in π-Resonant 1D ntermolecular Channels. Nano Lett. 2(8), 877 (2002)

    Article  CAS  Google Scholar 

  76. Heath, J. and Ratner, M.: Molecular electronics. Phys. Today 56(5), 43 (2003)

    Article  CAS  Google Scholar 

  77. Fishelson, N.; Shkrob, I.; Lev, O.; Gun, J.; and Modestov, A. D.: Studies on charge transport in self-assembled gold-dithiol films: Conductivity, photoconductivity, and photoelectrochemical measurements. Langmuir 17(2), 403 (2001)

    Article  CAS  Google Scholar 

  78. Eigler, D. M. and Schweizer, E. K.: Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990)

    Article  CAS  Google Scholar 

  79. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; and Mirkin, C. A.: Dip pen nanolithography. Science 283, 661–663 (1999)

    Article  CAS  Google Scholar 

  80. Hodneland, C. D.; Lee, Y.-S.; Min, A.-H.; and Mrksich, M.: Supramolecular chemistry and self-assembly special feature: Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. PNAS 99, 5048 (2002)

    Article  CAS  Google Scholar 

  81. Molecular Electronics: Biosensors and Biocomputers Hong, F., Ed. Plenum Press, New York (1989)

    Google Scholar 

  82. Kikkawa, J. M. and Awschalom, D. D.: Lateral drag of spin coherence in gallium arsenide. Nature 397, 139 (1999)

    Article  CAS  Google Scholar 

  83. Flatté, M. E. and Byers, J. M.: Spin diffusion in semiconductors. Phys. Rev. Lett. 84(18), 4220 (2000)

    Article  Google Scholar 

  84. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281(5379), 951 (1998)

    Article  CAS  Google Scholar 

  85. Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; and LaBella, V. P.: Above room temperature ferromagnetism in Mn-ion implanted Si. Phys. Rev. B 71, 033302 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain E. Kaloyeros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kaloyeros, A.E. et al. (2009). Emerging Nanoscale Interconnect Processing Technologies: Fundamental and Practice. In: Shacham-Diamand, Y., Osaka , T., Datta, M., Ohba, T. (eds) Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95868-2_34

Download citation

Publish with us

Policies and ethics