Emerging Nanoscale Interconnect Processing Technologies: Fundamental and Practice

  • Alain E. KaloyerosEmail author
  • James Castracane
  • Kathleen Dunn
  • Eric Eisenbraun
  • Anand Gadre
  • Vincent LaBella
  • Timothy Stoner
  • Bai Xu
  • James G. Ryan
  • Anna Topol


The prospects for Gigascale integration and beyond are hindered, in the near term, by increasingly higher RC delays in global and semi-global electrical interconnect systems. Long-term, signal transmission delays are projected to become significantly more challenging due to fundamental limits imposed by the basic laws of physics. As feature sizes shrink below the mean free path for electron scattering in conventional metal wires, surface scattering, which is defined as the scattering of electron waves from the boundaries of ultra narrow conductors, severely hinders electronic conductivity and stands as a major roadblock to Moore’s Law at the most fundamental level.


Atomic Layer Deposition Chemical Mechanical Polishing Electroless Plating Wafer Level Copper Interconnect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Edelstein, D.; Heidenreich, J.; Goldblatt, R. D.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Wachnik, R.; Rathore, H.; Luce, S.; and Slattery, J.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology. Tech. Digest IEEE, International Electron Devices Meeting, 773–776 (1997)Google Scholar
  2. 2.
    Goldblatt, R. D.; Agarawala, B.; Anand, M. B.; Barth, E. P.; Biery, G. A.; Chen, Z. G.; Cohen, S.; Connolly, J. B.; Cowley, A.; Dalton, T.; Das, S. K.; Davis, C. R.; Deutsch, A.; DeWan, C.; Edelstein, D. C.; Emmi, P. A.; Faltermeier, C. G.; Fitzsimmons, J. A.; Hedrick, J.; Heidenreich, J. E.; Hu, C. K.; Hummel, J. P.; Jones, P.; Kaltalioglu, E.; Kastenmeier, B. E.; Krishnan, M.; Landers, W. F.; Liniger, E.; Liu, J.; Lustig, N. E.; Malhotra, S.; Manger, D. K.; McGahay, V.; Mih, R.; Nye, H. A.; Purushothaman, S.; Rathore, H. A.; Seo, S. C.; Shaw, T. M.; Simon, A. H.; Spooner, T. A.; Stetter, M.; Wachnik, R. A.; and Ryan, J. G.: A High Performance 0.13 pm Copper BEOL Technology with Low-k Dielectric. Presentation at the International Interconnect Technology Conference, Burlingame, CA (2000)Google Scholar
  3. 3.
    El-Kareh, B.: Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishers, Boston, 552 (1995)Google Scholar
  4. 4.
    Singer, P.: Changing the Promise of Faster Chips. Semicond. Int. 11, 52 (1994)Google Scholar
  5. 5.
    Hu, C.-K.; Luther, B.; Kaufman, F. B.; Hummel, J.; Uzoh, C.; and Pearson, D. J.: Copper interconnection integration and reliability. Thin Solid Films 262, 84 (1995)CrossRefGoogle Scholar
  6. 6.
    Kaanta, C. W.; Bombardier, S. G.; Cote, W. J.; Hill, W. R.; Kerszykowski, G.; Landis, H. S.; Poindexter, D. J.; Pollard, C. W.; Ross, G. H.; Ryan, J. G.; Wolff, S.; and Cronin, J. E.: Dual-Damascene: a ULSI wiring technology. Proceedings of the 8th International VLSI Multilevel Interconnection Conference, 144 (1991)Google Scholar
  7. 7.
    Zhu, Y.: Integration of Atomic Layer Deposition Tantalum Nitride and Platinum with Electrochemical Deposition of Copper for Interconnect Technology, Ph.D. Thesis, College of Nanoscale Science and Engineering of the University at Albany-SUNY, (2006)Google Scholar
  8. 8.
    Lee, B.: Electroless CoWP boosts copper reliability, device performance. Semicond. Int. 7, 95 (2004)Google Scholar
  9. 9.
    Ritala, M. and Leskela, M.: In Handbook of Thin film Materials. Nalwa, H., Ed. Deposition and Processing of Thin Films, Academic Press 1, 103 (2002)Google Scholar
  10. 10.
    Ramm, P.; Klumpp, A.; Merkel, R.; Weber, J.; Wieland, R.; Ostmann A.; and Wolfe, J.: 3D System Integration Technologies. Mat. Res. Soc.766, E5.6.1 (2003)Google Scholar
  11. 11.
    Fukushima, T.; Yamada, Y.; Kikuchi, H.; and Koyanagi, M.: New 3D Integration technology using chip to wafer bonding to achieve ultimate super-chip integration. Jap. J. Appl. Phys. 45(4B), 3030–3035, (2006)CrossRefGoogle Scholar
  12. 12.
    Niklaus, F.; Stemme, G.; Lu, J.-Q.; and Gutmann, R. J.: Adhesive wafer bonding. J. Appl. Phys. 99, 031101-01-031101-28 (2006)CrossRefGoogle Scholar
  13. 13.
    Islam, R.; Brubaker, C.; Lindner P.; and Schaefer, C.: Wafer Level Packaging and 3D Interconnect for IC Technology. IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 212–217 (2002)Google Scholar
  14. 14.
    Xu, B.; Gracias, A.; Tokranova, N.; and Castracane, J.: Wafer Bonding for 3D Integration of MEMS/CMOS. to be published, MOEMS and Miniaturized Systems, (2006)Google Scholar
  15. 15.
    Fletcher, C.; Skele, M.; and Castracane, J.: Recent Developments in Vertically Integrated Sensor Arrays. Proceedings-GOMAC, (2005)Google Scholar
  16. 16.
    Reichl, H. and Ramm, P.: 3D System Integration. Fraunhofer IZM Bulletin, (2006); Wieland, R.; Ramm, P.; and Schulz, S.:  Fraunhofer IZM Annual Report, 115 (2002); Ramm, P.; Klumpp, A.; Merkel, R.; Weber, J.; Weiland, R; Ostmann, A.; and Wolf, J.: 3D system integration technologies. Proc. Mat. Res. Soc. Symp. 766, 3 (2003)Google Scholar
  17. 17.
    Pascual, D.: Fabrication and Assembly of 3D MEMS Devices. Solid State Technol. 48, 22 (2005)Google Scholar
  18. 18.
    Alexe, M. and Gosele, U.: Wafer Bonding Applications and Technology, Springer-Verlag, Berlin, (2004)Google Scholar
  19. 19.
    Iyer, S. S. and Auberton-Herve, A. J.: Silicon Wafer Bonding Technology for VLSI and MEMS, INSPEC, London, (2002)Google Scholar
  20. 20.
    Heath, J.: The Bridge (National Academy of Engineering) 33(4), 197 (2003)Google Scholar
  21. 21.
    Li, H. J.; Ly, W. G.; Li, J. J.; Bai, X. D.; and Gu, C. Z.: Multichannel Ballistic Transport in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 95, 086601 (2005)CrossRefGoogle Scholar
  22. 22.
    Kaloyeros, A. E.; Dunn, K. A; Carlsen A. T.; and Topol, A. W.: Carbon Nanotube Interconnects invited article for the Marcel Dekker Encyclopedia of NanoScience and NanoTechnology. Schwarz, J. A.; Contescu, C. I.; and Putyera, K.Eds. 1, 435–446 (2004)Google Scholar
  23. 23.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354(6348), 56 (1991)CrossRefGoogle Scholar
  24. 24.
    Dresselhaus, M. S.; Dresselhaus, G.; and Eklund, P. C.: Science of Fullerenes and Carbon Nanotubes; Academic Press.; San Diego, US (1996)Google Scholar
  25. 25.
    Ajayan, P. M. and Ebbesen, T. W.: Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025 (1997)CrossRefGoogle Scholar
  26. 26.
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; and Avouris, Ph.: Single and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73(17), 2447 (1998)CrossRefGoogle Scholar
  27. 27.
    Tans, S. J.; Verschueren, R. M.; and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)CrossRefGoogle Scholar
  28. 28.
    Charlier, J.-C.; and Iijima, S.: Electronic properties, junctions, and defects of carbon nanotubes. In Growth mechanisms of Carbon Nanotubes, Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph., Eds. Topics A Physics; Springer-Verlag Heidelberg, Berlin, 80, 55 (2001)CrossRefGoogle Scholar
  29. 29.
    Ebbesen, T. W. and Ajayan, P. M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992)CrossRefGoogle Scholar
  30. 30.
    Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao A.; and Wang, G.: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996)CrossRefGoogle Scholar
  31. 31.
    Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; and Prevencio, P. N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)CrossRefGoogle Scholar
  32. 32.
    Collins, P. G.; Arnold, Ml S.; and Avouirs, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706 (2001)CrossRefGoogle Scholar
  33. 33.
    Kaloyeros, A. E; Dunn, K. A; Carlsen, A. T.; and Topol, A. W.: Carbon Nanotube Interconnects. In Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, 435 (2003)Google Scholar
  34. 34.
    Iijima, S. and Ichihashi, ST.: Single-shell carbon nanotubes of 1-nm diameter. Nature (London) 363(6430), 603 (1993)CrossRefGoogle Scholar
  35. 35.
    Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquea, J.; and Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London) 363(6430), 605 (1993)CrossRefGoogle Scholar
  36. 36.
    Ajayan, P. M.; Lambert, J. M.; Bernier, P.; Barbedette, L.; Colliex, C.; and Planeix, J. M.: Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis. Chem. Phys. Lett. 215(5), 509 (1993)CrossRefGoogle Scholar
  37. 37.
    Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; and Dai, H.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878 (1998)CrossRefGoogle Scholar
  38. 38.
    Saito, R.; and Dresselhaus, M. S.; and  Dresselhaus, M. S.: Electronic structure of double-layer graphene tubules. J. Appl. Phys. 73(2), 494 (1993)CrossRefGoogle Scholar
  39. 39.
    Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kardatos, K.; Hsu, W. K.; Hare, J. P.; Townshend, P. D.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; and Walton D. R. M.: Controlled production of aligned-nanotube bundles. Nature 388, 52 (1997)CrossRefGoogle Scholar
  40. 40.
    Guo, T.; Jin, C.-M.; and Smalley, R. E.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49 (1995)CrossRefGoogle Scholar
  41. 41.
    Louie, S. G.: Electronic properties, junctions, and defects of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 113 (2001)CrossRefGoogle Scholar
  42. 42.
    Stahl, H.: Electronic transport in ropes of single wall carbon nanotubes. In Dissertation approved by the Faculty for Mathematics, Informatics and Natural Sciences at the Aachen University of Technology (2000)Google Scholar
  43. 43.
    Tans, S. J.; Devoret, M. H.; Dai, H., Thess, A. Smalley, R. E.; Geerligs, L. J.; and Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature (London) 386(6624), 474 (1997)CrossRefGoogle Scholar
  44. 44.
    Bockrath M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; and Smalley, R. E.: Single-electron transport in ropes of carbon nanotubes. Science 275(5308), 1922 (1997)CrossRefGoogle Scholar
  45. 45.
    Yakobson, Boris I. and Avouris, Ph.: Mechanical properties of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds; Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 287 (2001)CrossRefGoogle Scholar
  46. 46.
    Wong, E. W.; Sheehan, P. E.; and Lieber, C. M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997)CrossRefGoogle Scholar
  47. 47.
    Yu, M. F.; Lourie, O.; Dyer, M.; Moloni, K.; and Rouff, R. S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000)CrossRefGoogle Scholar
  48. 48.
    Dresselhaus, M. S. and Endo, M.: Relation of carbon nanotubes to other carbon materials. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin 80, 11 (2001)CrossRefGoogle Scholar
  49. 49.
    Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; and Rubio, A.: Mechanical response of singlewalled carbon nanotubes in polymer nanocomposites. Adv. Mater. 12, 750 (2000)CrossRefGoogle Scholar
  50. 50.
    Yakobson, B. I.; Brabec, C. J.; and Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)CrossRefGoogle Scholar
  51. 51.
    Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; and Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420), 522 (1999)CrossRefGoogle Scholar
  52. 52.
    Fischer, J. E.; Dai, H.; Thess, A.; Lee, R.; N. Hanjani, M.; Dehaas, D. L.; and Smalley R. E.: Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, R4921 (1997)CrossRefGoogle Scholar
  53. 53.
    Frank, S.; Poncharal, P.; Wang, Z. L.; and de Heer, W. A.: Carbon nanotube quantum resistors. Science 280, 1744 (1998)CrossRefGoogle Scholar
  54. 54.
    Hertel, T; Walkup, R. E; and Avpuris, P: Deformation of carbon nanotubes by surface van der Walls forces. Phys. Rev. B 58(20), 13870 (1998)CrossRefGoogle Scholar
  55. 55.
    Fuhrer, M. S.; Nygård, J.; Shih, L.; Ferero, M.; Yoon, Y.-G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; and McEuen, P. L.: Crossed nanotube junctions. Science 288 (5465), 494 (2000)CrossRefGoogle Scholar
  56. 56.
    Kane, C. L.; and Mele, E. J.: Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997)CrossRefGoogle Scholar
  57. 57.
    Terrones, M.; Banhart, F.; Grobert, N.; Charlier, J.-C.; Terrones H.; and Ajayan, P. M.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505-1 (2002)CrossRefGoogle Scholar
  58. 58.
    Stahl, H.; Appenzeller, J.; Martel, R.; and Avouris, Ph.: Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000)CrossRefGoogle Scholar
  59. 59.
    Farró, L. and Schönenberger, C.: Physical properties of multi-wall nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Dresselhaus, M. S., Dresselhaus, G., Avouris, Ph., Eds. Topics App. Physics; Springer-Verlag Heidelberg, Berlin, 80, 329 (2001)CrossRefGoogle Scholar
  60. 60.
    Vajtai, R.; Wei, B. Q.; Zhang, Z. J.; Jung, Y.; Ramanath G.; and Ajayan, P. M.: Building carbon nanotubes and their smart architecture. Smart Mater. Struct.11, 691 (2002)CrossRefGoogle Scholar
  61. 61.
    Scuseria, G. E.: The equilibrium structures of giant fullerenes: Faceted or spherical shape? An ab initio Hartree-Fock study. Chem. Phys. Lett. 195, 534 (1992)CrossRefGoogle Scholar
  62. 62.
    Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; and Cohen, M. L.: Pure carbon nanoscale devices: Nanotube heterojunctions. Phys. Rev. Lett. 76(6-7), 971 (1996)CrossRefGoogle Scholar
  63. 63.
    Menon, M.; and Srivastava, D.: Carbon nanotube t junctions: Nanoscale metal semiconductor metal contact devices. Phys. Rev. Lett. 79(22), 4453 (1997)CrossRefGoogle Scholar
  64. 64.
    Yao Z.; Postma, H. W. Ch.; Balents, L.; and Dekker, C.: Carbon nanotube intermolecular junctions. Nature (London) 402, 273 (1999)CrossRefGoogle Scholar
  65. 65.
    Choi W. B. and Lee, Y. H.: Carbon nanotube and its application to nanoelectronics. Industrial Applications of Electron Microscopy; Li, Z. Ed., Marcel Dekker, New York, Chapter 14, 614 (2002)Google Scholar
  66. 66.
    Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; and Dai, H. J.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998)CrossRefGoogle Scholar
  67. 67.
    Tans, T. J.; Verschueren, R. M.; and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)CrossRefGoogle Scholar
  68. 68.
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph.: Single and multi wall nanotube field effect transistors. Appl. Phys. Lett. 73(17), 2447 (1998)CrossRefGoogle Scholar
  69. 69.
    Wei, B.-Q.; Kohler-Redlich, P.; Bader, U.; Heiland, B.; Spolenak, R.; Arzt E.; Ruhle, M.: Selective specimen preparation for TEM observation of the cross section of individual carbon nanotube/metal junctions. Ultramicroscopy 85(2) 93 (2000)CrossRefGoogle Scholar
  70. 70.
    Kaloyeros, A. E, Welch, J.; Castracane J.; Oktyabrsky, S.; Geer, R.; and Dovidenko, K.: Interconnect Nanotechnology. Overarching Concepts and Demonstration Vehicles. Annual review of the Interconnect Focus Center 2002, Atlanta, GA, (2002)Google Scholar
  71. 71.
    Sagnes, M.; Broto, J.-M.; Raquet, B.; Ondarçuhu, T.; Laurent, Ch.; Flahaut, E.; Vieu, Ch.; and Carcenac, F.: Alignment and nano-connections of isolated carbon nanotubes. Microelectron. Eng. 67–68, 683 (2003)CrossRefGoogle Scholar
  72. 72.
    Austin, D. W.; Puretzky, A. A; Geohegan, D. B.; Britt, P. F.; Guillorn M. A.; and Simpson, M. L.: The electrodeposition of metal at metal/carbon nanotube junctions. Chem. Phys. Lett. 361, 525 (2002)CrossRefGoogle Scholar
  73. 73.
    Boulas C.; Davidovits, J. V.; Rondelez, F.; and Vuillaume, D.: Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797 (1996)CrossRefGoogle Scholar
  74. 74.
    Mujica, V. and Ratner, M. A.: In Handbook of Nanoscience, Engineering, and Technology. Goddard III W. A. et al., eds. CRC Press, Boca Raton, Fla. (2002)Google Scholar
  75. 75.
    Rochefort, A.; Martel, R.; and Avouris, P.: Electrical Switching in π-Resonant 1D ntermolecular Channels. Nano Lett. 2(8), 877 (2002)CrossRefGoogle Scholar
  76. 76.
    Heath, J. and Ratner, M.: Molecular electronics. Phys. Today 56(5), 43 (2003)CrossRefGoogle Scholar
  77. 77.
    Fishelson, N.; Shkrob, I.; Lev, O.; Gun, J.; and Modestov, A. D.: Studies on charge transport in self-assembled gold-dithiol films: Conductivity, photoconductivity, and photoelectrochemical measurements. Langmuir 17(2), 403 (2001)CrossRefGoogle Scholar
  78. 78.
    Eigler, D. M. and Schweizer, E. K.: Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990)CrossRefGoogle Scholar
  79. 79.
    Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; and Mirkin, C. A.: Dip pen nanolithography. Science 283, 661–663 (1999)CrossRefGoogle Scholar
  80. 80.
    Hodneland, C. D.; Lee, Y.-S.; Min, A.-H.; and Mrksich, M.: Supramolecular chemistry and self-assembly special feature: Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. PNAS 99, 5048 (2002)CrossRefGoogle Scholar
  81. 81.
    Molecular Electronics: Biosensors and Biocomputers Hong, F., Ed. Plenum Press, New York (1989)Google Scholar
  82. 82.
    Kikkawa, J. M. and Awschalom, D. D.: Lateral drag of spin coherence in gallium arsenide. Nature 397, 139 (1999)CrossRefGoogle Scholar
  83. 83.
    Flatté, M. E. and Byers, J. M.: Spin diffusion in semiconductors. Phys. Rev. Lett. 84(18), 4220 (2000)CrossRefGoogle Scholar
  84. 84.
    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281(5379), 951 (1998)CrossRefGoogle Scholar
  85. 85.
    Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; and LaBella, V. P.: Above room temperature ferromagnetism in Mn-ion implanted Si. Phys. Rev. B 71, 033302 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alain E. Kaloyeros
    • 1
    Email author
  • James Castracane
    • 1
  • Kathleen Dunn
    • 1
  • Eric Eisenbraun
    • 1
  • Anand Gadre
    • 1
  • Vincent LaBella
    • 1
  • Timothy Stoner
    • 1
  • Bai Xu
    • 1
  • James G. Ryan
    • 2
  • Anna Topol
    • 3
  1. 1.College of Nanoscale Science and EngineeringThe University at Albany-SUNYAlbanyUSA
  2. 2.Dean, JSNNGreensboroUSA
  3. 3.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations