Advertisement

Advanced Planarization Techniques

  • Bulent M. Basol
Chapter

Abstract

As the integrated circuit technology nodes reach 45 nm and beyondgrowing requirement for reduced propagation delay dictates inclusion of low-k materials in the interconnect metallization structures. Unfortunately, mechanical properties, such as hardness and Young’s modulus of the dielectric materials, deteriorate as their porosity is increased and the k value is reduced to 2.5 and below [1]. Reliability issues such as electromigration, stress migration, and time-dependent dielectric breakdown (TDDB) lifetimes are also becoming more challenging for multi-stack low-k structures. The low-k and ultra low-k materials are prone to delamination [2] and cracking [3] during CMP; risk of damage rising as the polishing pressure and time increases [4]. It has been demonstrated that delamination in low-k stacks was driven by the work done against the friction force during the CMP process [5]. Therefore, it is becoming more and more difficult to polish and planarize topographic copper layers, deposited on low-k dielectric materials, at low stress and high rate while maintaining the mechanical integrity of the overall interconnect structure. Furthermore as feature widths and depths shrink, tolerances for metal loss and line resistance variation over the wafer surface are also reduced. In advanced interconnects, adding sacrificial thickness to the dielectric layer which can then be removed during CMP overpolish step is not a good option to minimize topography because hard cap layers are often used to protect the low-k dielectric materials from the negative effects of CMP [6, 7] and thickness of these layers is kept to a minimum to reduce their contribution to the effective dielectric constant of the stack. Therefore, as technology nodes move beyond 45 nm, planarization steps of the interconnect manufacturing process flow are expected to offer reduced stress, higher planarization efficiency, reduced copper dishing, less dielectric erosion, better global line resistance uniformity, while at the same time maintaining high process throughput, low defectivity, and low cost.

Keywords

Copper Surface Step Height Wafer Surface Copper Layer Copper Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Plawsky, J. L.; Gill, W. N.; Jain, A.; and Rogojevic, S.: In: Interlayer Dielectrics for Semiconductor Technologies. Murarka, S. P.; Eizenberg, M.; and Sinha, A. K.;(eds.) Elsevier Academic Press, UK, 261 (2003)CrossRefGoogle Scholar
  2. 2.
    Kloster, G.; Scherban, T.; Xu, G.; Blaine, J.; Sun, B.; and Zhou, Y.: Porosity effects on low-k dielectric film strength and interfacial adhesion, Proc. International Interconnect Technology Conf.,IEEE, San Francisco 242 (2002)Google Scholar
  3. 3.
    Maitrejean, S.; Fusalba, F.; Patz, M.; Jousseaume, V.; and Mourier, T.: Adhesion studies of thin films on ultra low-k, Proc. International Interconnect Technology Conf., IEEE, San Francisco, 206 (2002)Google Scholar
  4. 4.
    Kondo, S.; Tokitoh, S.; Yoon, B. U.; Namiki, A.; Sone, A.; Ohashi, N.; Misawa, K.; Sone, S.; Shin, H. J.; Yoshie, T.; Yoneda, K.; Shimada, M.; Ogawa, S.; Matsumoto, I.; and Kobayashi, N. S.: Low pressure CMP for reliable porous low-k/Cu integration, Proc. International Interconnect Technology Conf., IEEE, San Francisco, 86 (2003)Google Scholar
  5. 5.
    Leduc, P.; Savoye, M.; Maitrejean, S.; Scevola, D.; Jousseaume, V.; and PassemardG.: Understanding CMP-induced delamination in ultra low-k/Cu integration, Proc. International Interconnect Technology Conf.,IEEE, San Francisco, 209 (2005)Google Scholar
  6. 6.
    Wang, X. B.; Tan, J. B.; Siew, Y. K.; Zhang, B. C.; Liu, W. P.; Zhang, F.; Leong, L. S.; Roy, R.; and Hsia, L. C.: Integration of Cu-CMP process with combination of abrasive free copper polishing and low selective barrier polishing for 90 nm Cu/low-k interconnect, AMC 2004 (Materials Research Society) 571 (2005)Google Scholar
  7. 7.
    Yamada, Y.; Konishi, N.; Watanabe, S.; Noguchi, J.; Jimbo, T.; and Inoue, O.: Study on the degradation of TDDB reliability for Cu/low-k integration caused by Cu CMP process, CMP-MIC Conference, IMIC, 567 (2005)Google Scholar
  8. 8.
    Konishi, N.; Yamada, Y.; Noguchi, J.; and Tanaka, U.: Improvement in Cu-CMP technology for 90-nm nodes, AMC 2003, Materials Research Society, 127 (2004)Google Scholar
  9. 9.
    Belov, I.; Kim, J. Y.; Moser, T.; and Pierce, K.: Novel low-abrasive slurries and abrasive-free solutions for copper CMP, CMP-MIC Conference, IMIC, 300 (2005)Google Scholar
  10. 10.
    Kondo, S.; Sakuma, N.; Homma, Y.; Goto, Y.; Ohashi, N.; Yamaguchi, H.; and Owada, N.: Abrasive-Free Polishing for Copper Damascene Interconnection, J. Electrochem. Soc. 147, 3907 (2000)CrossRefGoogle Scholar
  11. 11.
    Matsuda, T.; Takahashi, H.; Tsurugaya, M.; Miyazaki, K.; Doy, T. K.; and Kinoshita, M.: Characteristics of Abrasive-Free Micelle Slurry for Copper CMP, J. Electrochem. Soc. 150, G532 (2003)CrossRefGoogle Scholar
  12. 12.
    Landolt, D.: Fundamental aspects of electropolishing, Electrochim. Acta 32, 1 (1987).CrossRefGoogle Scholar
  13. 13.
    Datta, M.: Anodic dissolution of metals at high rates, IBM J. Res. Dev. 37, 207 (1993)CrossRefGoogle Scholar
  14. 14.
    Vidal, R.; and West, A. C.: Copper electropolishing in concentrated phosphoric acidJ. Electrochem. Soc. 142, 2682 (1995)CrossRefGoogle Scholar
  15. 15.
    Bernhardt, A.; and Contolini, R.: Electrochemical Planarization, US Pat. No. 5,256,565 (1993)Google Scholar
  16. 16.
    Contolini, R.; Bernhardt, A. F.; and Mayer, S. T.: Electrochemical planarization for multilevel metallization, J. Electrochem. Soc. 141, 2503 (1994)CrossRefGoogle Scholar
  17. 17.
    Contolini, R. J.; Mayer, S. T.; Graff, R. T.; Tarte, L.; and Bernhardt, A. F.: Electrochemical planarization of ULSI copper, Solid State Technology 155 (1997)Google Scholar
  18. 18.
    Lopatin, S.; Preusse, A.; and Cheung, R.: Interconnect and Contact Metallization for ULSI. Arita, Y.; MathadG. S.; and Rathore, H. R., Eds. Electrochemical Society, New Jersey, 221 (1999)Google Scholar
  19. 19.
    Chang, S. H.; Shieh, J. M.; Huang, C. C.; Dai, B. T.; Li, Y. H.; and Feng, M. S.: Microleveling mechanism and applications of electropolishing on planarization of copper metallization. J. Vac. Sci. Technol. B 20, 2149 (2002)CrossRefGoogle Scholar
  20. 20.
    Padhi, D.; Yahalom, J.; Gandikota, S.; and Dixit, G.: Planarization of copper thin films by electropolishing in phosphoric acid for ULSI applications. J. Electrochem. Soc. 150, G10 (2003)CrossRefGoogle Scholar
  21. 21.
    Chang, S. C.; Shieh, J. M.; Dai, B. T.; Feng, M. S.; Li, Y. H.; Shih, C. H.; Tsai, H. M.; Shue, S. L.; Liang, R. S.; and Wang, Y. L.: Superpolishing for planarizing copper Damascene interconnects, Electrochem. Solid State Lett. 6, G72 (2003)CrossRefGoogle Scholar
  22. 22.
    Chang, S. C. and Wang, Y. L.: Effects of applied voltages on planarization efficiency of copper electropolishing. J. Vac. Technol. B 22, 2754 (2004)CrossRefGoogle Scholar
  23. 23.
    Huo, J.; Solanki, R.; and McAndrew, J.: Study of anodic layers and their effects on electropolishing of bulk and electroplated films of copper. J. Appl. Electrochem. 34, 305 (2004)CrossRefGoogle Scholar
  24. 24.
    Du, B. and Suni, I. I.: Mechanistic studies of Cu electropolishing in phosphoric acid electrolytes. J. Electrochem. Soc. 151, C375 (2004)CrossRefGoogle Scholar
  25. 25.
    Liu, S. H.; Shieh, J. M.; Chen, C.; Dai, B. T.; Hensen, K.; and Cheng, S. S.: Two-additive electrolytes for superplanarizing Damascene copper metals, Electrochem. Solid-State Lett. 8, C47 (2005)CrossRefGoogle Scholar
  26. 26.
    Huo, J.; Solanki, R.; and McAndrew, J.: A novel electroplanarization system for replacement of CMP. Electrochem. Solid-State Lett. 8, C33 (2005)CrossRefGoogle Scholar
  27. 27.
    Wang, H.: Methods and apparatus for electropolishing metal interconnections on semiconductor devices, US Pat. No. 6,837,984 (2005)Google Scholar
  28. 28.
    West, A. C.; Shao, I.; and Deligianni, H.: Numerical simulation of electrochemical planarization of copper overburden. J. Electrochem. Soc. 152, C652 (2005)CrossRefGoogle Scholar
  29. 29.
    Suni, I. I. and Du, B.: Copper planarization for ULSI processing by electrochemical methods: a review. IEEE Trans. Semicond. Manuf. 18, 341 (2005)CrossRefGoogle Scholar
  30. 30.
    West, A. C.; Deligianni, H.; and Andricacos, P. C.: Electrochemical polishing of interconnect metallization. IBM J. Res. Devel. 49, 37 (2005)CrossRefGoogle Scholar
  31. 31.
    Singer, P.: Copper challenges for the 45 nm node. Semicond. Int. 27, 40 (2004)Google Scholar
  32. 32.
    Talieh, H.: Method and apparatus for electrochemical mechanical deposition. U.S. Patent No. 6,176,992 (2001)Google Scholar
  33. 33.
    Uzoh, C. E.; Talieh, H. B. Basol, M.; and Young, D. W.: Workpiece proximity plating apparatus. U.S. Patent No. 6,630,059 (2003)Google Scholar
  34. 34.
    Basol, B.M.: Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence. U.S. Patent No. 6,534,116 (2003)Google Scholar
  35. 35.
    Basol, B. M.; Uzoh, C. E.; Talieh, H.; Wang, T.; Guo, G.; Erdemli, S.; Cornejo, M.; Bogart, J.; and Basol, E.C.: Planar copper electroplating and electropolishing techniques. Chem. Eng. Comm. 193(7), 903 (2006)CrossRefGoogle Scholar
  36. 36.
    Noji, I.; Kobata, I.; Yasuda, H.; Izumi, T.; Kumekawa, M.; Wada, Y.; Fukunaga, A.; Tsujimura, M.; Toma, Y.; Suzuki, T.; and Saitoh, T.: Application of electro-chemical polishing in DI water to Cu Damascene wiring planarization process, AMC 2004 (Materials Research Society), 577 (2005)Google Scholar
  37. 37.
    Wada, Y.; Noji, I.; Kobata, I.; Kohama, T.; Fukunaga, A.; and Tsujimura, M.: The enabling solution of Cu/low-k planarization technology, Proc. International Interconnect Technology Conf.,(IEEE, San Francisco, 126 (2005)Google Scholar
  38. 38.
    Mazur, S.; Jackson, C. E.; and Foggin, G. W.: Membrane-mediated electropolishing of Damascene copper, Proc. International Interconnect Technology Conf., IEEE, San Francisco, 206 (2005)Google Scholar
  39. 39.
    Dow, W. P. and Huang, H. S.: Roles of chloride ion in microvia filling by copper electrodeposition. J. Electrochem. Soc., 152, C67 (2005).Google Scholar
  40. 40.
    Andricacos, P. C.; Uzoh, C.; Ducovic, J.O.; Horkans, J.; and Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 (1998)CrossRefGoogle Scholar
  41. 41.
    West, A. C.: Theory of filling of high aspect ratio trenches and vias in presence of additives. J. Electrochem. Soc. 147, 227 (2000)CrossRefGoogle Scholar
  42. 42.
    ReidJ. and Mayer, S.: Factors influencing fill of IC features using electroplated copper, AMC 1999, (Materials Research Society), 53 (2000)Google Scholar
  43. 43.
    Josell, D.; Wheeler, D.; Huber W. H.; and Moffat, T. P.: Superconformal electrodeposition in submicron features. Phys. Rev. Lett. 87, 016102-1 (2001)Google Scholar
  44. 44.
    Moffat, T. P.; Wheeler, D.; Huber, W.H.; and Josell, J.: Superconformal electrodeposition of copper, Electrochem. Solid-State Lett. 4, C26 (2001)CrossRefGoogle Scholar
  45. 45.
    Basol, B. M.; Uzoh, C.; Talieh, H.; Young, D.; Lindquist, P.; Wang, T.; and Cornejo, M.: ECMD technique for semiconductor interconnect applications. Microelectron. Eng. 64, 43 (2002)CrossRefGoogle Scholar
  46. 46.
    Basol, B. M.: Mechanically induced super-filling of low aspect ratio cavities in an electrochemical mechanical deposition process. J. Electrochem. Soc. 151, C765 (2004)CrossRefGoogle Scholar
  47. 47.
    Basol, B. M.; Erdemli, S.; Uzoh, C.; and Wang, T.: Planarization efficiency of electrochemical mechanical deposition and its dependence on process parameters. J. Electrochem. Soc. 153(3), C176 (2006)CrossRefGoogle Scholar
  48. 48.
    Basol, B. M. and West, A. C.: Study on mechanically induced current suppression and super filling mechanisms. Electrochem. Solid-State Lett. 9(4), C77 (2005)CrossRefGoogle Scholar
  49. 49.
    Cao, Y.; Taephaisitphongse, P.; Chalupa, R.; and West, A. C.: Three-additive model of super-filling of copper. J. Electrochem. Soc. 148, C466 (2001)CrossRefGoogle Scholar
  50. 50.
    Uzoh, C.; Basol, B.; and Talieh, H.: Pad designs and structures for a versatile materials processing apparatus. US Patent No. 6,413,388 (2002)Google Scholar
  51. 51.
    Basol, B. M.; Uzoh, C. E.; and Bogart, J. A.: Low-force electrochemical mechanical processing method and apparatus, US Patent Publication No. 2003/0064669 (2003)Google Scholar
  52. 52.
    Mourier, T.; Haxaire, K.; Cordeau, M.; Chausse, P.; DaSilva, S.; and Torres, J.: Electrochemical mechanical deposition and reverse linear planarization of copper for 45 nm node ULK integration, AMC 2004, (Materials Research Society), 597 (2005)Google Scholar
  53. 53.
    Moffat, T. P.; Wheeler, D.; Witt, C.; and Josell, D.: Superconformal electrodeposition using derivitized substrates. Electrochem. Solid-State Lett. 5, C110 (2002)CrossRefGoogle Scholar
  54. 54.
    Taephaisitphongse, P.; Cao, Y.; and West, A.: Electrochemical and fill studies of a multicomponent additive package for copper deposition. J. Electrochem. Soc. 148, C492 (2001)CrossRefGoogle Scholar
  55. 55.
    Stickney, B.; Nguyen, B.; Basol, B.; Uzoh, C.; and Talieh, H.: Topography reduction for copper Damascene interconnects. Solid State Technol. 46, 49 (2003)Google Scholar
  56. 56.
    Vos, I.; Heylen, N.; Hernandez, J. L.; Wang, T.; Truong, T.; Basol, B.; Sprey, H.; and Vanhaelemeersch, S.: Influence of Copper Plating and Die Layout on the Copper CMP Performance, AMC 2005: Asian Session, Tokyo, Japan (2005)Google Scholar
  57. 57.
    Aksu, S. and Doyle, F. M.: The role of glycine in the CMP of copper. J. Electrochem. Soc. 149, G352 (2002)CrossRefGoogle Scholar
  58. 58.
    Tsai, C. S. and Tseng, P. N.: Chemical mechanical planarization apparatus and polishing methodUS Patent No. 5,575,706 (1996)Google Scholar
  59. 59.
    Uzoh, C. E. and Harper, J. M. E.: Method of electrochemical mechanical planarization. US Patent No. 5,807,165 (1998)Google Scholar
  60. 60.
    Sato, S.; Yasuda, Z.; Ishihara, M.; Komai, N.; Ohtorii, H.; Yoshio, A.; Segawa, Y.; Horikoshi, H.; Ohoka, Y.; Tai, K.; Takahashi, S.; and Nogami, T.: Newly developed electrochemical polishing process of copper as replacement of CMP suitable for Damascene copper inlaid in fragile low-k dielectrics, IEDM 2001 (IEEE), 4.4.1-4.4.4. (2001)Google Scholar
  61. 61.
    Sun, L.; Tsai, S. D.; and Redeker, F. C.: Method and apparatus for electrochemical mechanical planarization, US Patent No. 6,379,223 (2002)Google Scholar
  62. 62.
    Economikos, L.; Wang, X.; Sakamoto, A.; Ong, P.; Naujok, M.; Knarr, R.; Chen, L.; Moon, Y.; Neo, S.; Salfelder, J.; Duboust, A.; Manens, A.; Lu, W.; Shrauti, S.; Liu, F.; Tsai, S.; and Swart, W.: Integrated electro-chemical mechanical planarization for future generation device technology, Proc. International Interconnect Technology Conf., IEEE, San Francisco, 233 235 (2004)Google Scholar
  63. 63.
    Sakamoto, A.; Economikos, L.; Ong, P.; Naujok, M.; Tseng, W.; Moon, Y.; Salfelder, J.; Duboust, A.; and Nogami, T.: Electro-chemical mechanical planarization and its evaluation on BEOL with 65 nm node dimensions, CMP-MIC Conference (IMIC), 191–199 (2005)Google Scholar
  64. 64.
    Manens, A.; Miller, P.; Kollata, E.; and Duboust, A.: Advanced process control extends ECMP process consistency, Solid State Technology, February 2006.Google Scholar
  65. 65.
    Emesh, I.; Khosla, V.; Erdemli, S.; Emami, R.; and Basol, B. M.: Thin and planar copper layers for advanced interconnect fabrication, AMC 2005 (Materials Research Society), 501 (2006)Google Scholar
  66. 66.
    Duboust, A.; Wang, Y.; Liu, F.; and Hsu, W. Y.: http://www.eurosemi.eu.com. (2005)
  67. 67.
    Talieh, H.; Uzoh, C.; and Basol, B. M.: Device providing electrical contact to the surface of a semiconductor workpiece during metal plating, US Patent No. 6,497,800 (2002)Google Scholar
  68. 68.
    Talieh, H. and Basol, B.: Method for forming an electrical contact with a semiconductor substrate, US Patent No. 6,471,847 (2002)Google Scholar
  69. 69.
    Kondo, S.; Tominaga, S.; Namiki, A.; Yamada, K.; Abe, D.; Fukaya, K.; Shimada, M.; and Kobayashi, N.: Novel electrochemical mechanical planarization using carbon polishing pad to achieve robust ultra low-k/Cu integration, Proceedings of the International Interconnect Technology Conf., IEEE, San Francisco, 203 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.SoloPower Inc.San JoseUSA

Personalised recommendations