Interconnects in ULSI Systems: Cu Interconnects Electrical Performance



Integrated electronic systems have advanced in complexity at an exponential rate during the last four decades, as measured by the number of transistors on a single silicon chip [1, 2]. This growth, which had major implications on economy and society, was enabled by continuous miniaturization of transistor devices and the metallic wire structures used for making interconnections among them. In recent technology generations, as a result of the scaling down of all device and wire dimensions, the interconnect structures have become dominant limiters of system performance, power, and cost [3].


Metal Layer Wire Length Gate Delay Circuit Architecture Power Distribution Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.:Cramming more components onto integrated circuits. Electronics 86(1), 1117–119 (1965). Reprinted in Proceedings of the IEEE, 82, 85 (1998)Google Scholar
  2. 2.
    Borkar, S.: Electronics beyond nano-scale CMOS. In Proceedings of the 43rd Annual Conference on Design Automation. San Francisco, CA, USA (2006)Google Scholar
  3. 3.
    Davis, J. A. et al.: Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 89(3), 305 (2001)CrossRefGoogle Scholar
  4. 4.
    Landman, B. S.; and Russo, R. L.: On a pin versus block relationship for partitions of logic graphs. IEEE Trans. Comput. C-201, 469 (1971)Google Scholar
  5. 5.
    Stroobandt, D.: A priori system-level interconnect prediction: Rent’s rule and wire length distribution models. In Proceedings of System Level Interconnect Prediction (SLIP), 3 (2001)Google Scholar
  6. 6.
    Davis, J. A.; Meindl, J. D.; and Venkatesan, R.: Performance enhancement through optimal N-tier multilevel interconnect architectures. Proceedings of the 12th IEEE ASIC/SOC Conference, Washington D.C. 19 (1999)Google Scholar
  7. 7.
    Sait, S. M. and Youssef, H.: VLSI Physical Design Automation Theory and Practice. World Scientific, New Jersey (1999)Google Scholar
  8. 8.
    Pedram, M.: Power minimization in IC design: principles and applications. ACM Trans. Des. Autom. Electron. Syst. 1, 3 (1996)CrossRefGoogle Scholar
  9. 9.
    Magen, N.; Kolodny, A.; Weiser, U.; and Shamir, N.: Interconnect-power dissipation in a Microprocessor. International System Level Interconnect Prediction workshop (SLIP 2004), Paris (2004)Google Scholar
  10. 10.
    Sato, T.; Cao, Yu; Agarwal, K.; Sylvester, D.; and Hu, C.: Bidirectional closed-form transformation between on-chip coupling noise waveforms and interconnect delay-change curves. IEEE Trans. Computer-Aided Des. Integrated Circuits Syst. l.22(5), 560 (2003)CrossRefGoogle Scholar
  11. 11.
    Banerjee, K. and Mehrotra, A.: Global (interconnect) warming. IEEE Circuits Devices Mag. 17(5), 16 (2001)CrossRefGoogle Scholar
  12. 12.
    Sakurai, T.; and Tamaru, K.: Simple formulas for two- and three-dimensional capacities. IEEE Trans. Electron Devices ED-30(2), (1983)Google Scholar
  13. 13.
    Wong, S. C.; Lee, G. W.; and Ma, D. J.: Modeling of interconnect capacitance, delay and crosstalk in VLSI. IEEE Trans. Semiconductor Manuf. 13(1), (2000)Google Scholar
  14. 14.
    Sapatnekar, S. S.: Timing. Springer, New York (2004)Google Scholar
  15. 15.
    Rabaey, J. M.; Chandrakasan, A.; and Nikolic, B.: Digital Integrated Circuits (2nd Edition), Prentice Hall, Upper Saddle River, New Jersey (2003)Google Scholar
  16. 16.
    Sutherland, I.; Sproull, B.; Harris, D.: Logical Effort – Designing Fast CMOS Circuits. Morgan Kaufmann, San Fransisco, CA (1999)Google Scholar
  17. 17.
    Bakoglu, H. B.: Circuits, Interconnections and Packaging for VLSI. Addison-Wesley, Boston, MA, 194, 1990.Google Scholar
  18. 18.
    Sylvester, D. and Keutzer, K.: Getting to the bottom of deep submicron. In Proc. ICCAD, 203 (1998)Google Scholar
  19. 19.
    Kahng, A. B. and Muddu, S.: Delay analysis of VLSI interconnections using the diffusion equation model, 31st Conference on Design Automation, 563 (1994)Google Scholar
  20. 20.
    Elmore, W. C.: The transient response of damped linear networks with particular regard to wide band amplifiers. J. Appl. Phys., 19(1) (1948).Google Scholar
  21. 21.
    Boese, K. D.; Kahng, A. B.; McCoy, B. A.; and Robins, G.: Fidelity and near-optimality of Elmore-based routing constructions. In Proceedings of 1993 IEEE International Conference on Computer Design (ICCD ’93), 81 (1993)Google Scholar
  22. 22.
    Ismail, Y. I. Friedman, E. G.; and Neves, J. L.: Figures of Merit to characterize the importance of On-Chip Inductance. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7(4), 442 (1999)CrossRefGoogle Scholar
  23. 23.
    Bakoglu, H. B. and Meindl, J. D.: Optimal interconnection circuits for VLSI. IEEE Trans. Electron Devices, ED-32, 903 (1985)CrossRefGoogle Scholar
  24. 24.
    Ismail, Y. I. and Friedman, E. G.: Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 82(2), 195 (2000)CrossRefGoogle Scholar
  25. 25.
    Gala, K.; Blaauw, D.; Wang, J.; Zolotov, V.; and Zhao, M.: Inductance 101: analysis and design issues. In Proceedings of the 38th Conference on Design Automation (DAC 2001). Las Vegas, Nevada, US (2001)Google Scholar
  26. 26.
    Goren, D. et al.: On-chip interconnect-aware design and modeling methodology, based on high bandwidth transmission line devices. In Proceedings of the 40th Conference on Design Automation, Anaheim, CA, USA (2003)Google Scholar
  27. 27.
    Barger, A.; Goren, D.; and Kolodny, A.: Design and modelling of network on chip interconnects using transmission lines. In Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, (ICECS 2004), Tel-Aviv, Israel, 403 (2004)Google Scholar
  28. 28.
  29. 29.
    Dally, W. J.; and Poulton, J. W.: Digital Systems Engineering. Cambridge University Press, Cambridge (1998)Google Scholar
  30. 30.
    Ho, R.; Mai, K.; and Horowitz, M.: The future of wires. Proc. IEEE 89(4), (2001)Google Scholar
  31. 31.
    Bohr, M. T.: Interconnect scaling—the real limiter to high-performance ULSI. In Proc. IEDM., 241 (1995)Google Scholar
  32. 32.
    Dally, W. J.: Interconnect-limited VLSI architecture. IEEE International Conf. Interconnect Technol., 15 (1999)Google Scholar
  33. 33.
    Cong, J.: An interconnect-centric design flow for nanometer technologies. Proc. IEEE. 89(4), 505 (2001)CrossRefGoogle Scholar
  34. 34.
    Gupta, P.; Kahng, A. B.; Kim, Y.; and Sylvester, D.: Investigation of performance metrics for interconnect stack architectures. In Proceedings of the 2004 International Workshop on System Level Interconnect Prediction. Paris, France (2004)Google Scholar
  35. 35.
    Kapur, P.; Chandra, G.; and Saraswat, K. C.: Power estimation in global interconnects and its reduction using a novel repeater optimization methodology. In Proceedings of the 39th Conference on Design Automation. New Orleans, Louisiana, USA (2002)Google Scholar
  36. 36.
    Chen, G. and Friedman, E. G.: Low-power repeaters driving RC and RLC interconnects with delay and bandwidth constraints. IEEE Trans. Very Large Scale Integrated Syst. 14(2), 161 (2006)CrossRefGoogle Scholar
  37. 37.
    Ismail, Y. I. and Friedman, E. G.: Optimum repeater insertion based on a CMOS delay model for on-chip RLC interconnect. Proceedings of Eleventh Annual IEEE International ASIC Conference, 369 (1998)Google Scholar
  38. 38.
    Nalamalpu, A.; Srinivasan, S.; and Burleson, W. P.: Boosters for driving long on chip interconnects – design issues, interconnect synthesis, and comparison with repeaters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 21(1), (2002)Google Scholar
  39. 39.
    Kaul, H.; and Sylvester, D.: Low-power on-chip communication based on transition-aware global signaling (TAGS). IEEE Transactions on Very Large Scale Integrated Systems. 12(5), 464 (2004)CrossRefGoogle Scholar
  40. 40.
    Svensson, C. and Caputa, P.: Well-behaved interconnect. IEEE Trans. Circuits Syst. – I, 52(2), (2005)Google Scholar
  41. 41.
    Chu, C. and Wong, D. F.: Closed form solution to simultaneous buffer insertion/sizing and wire sizing. ACM Trans. Design Automation of Electronic Systems 6(3), 343 (2001)CrossRefGoogle Scholar
  42. 42.
    Kahng, A. B.; Muddu, S.; Sarto, E.; and Sharma, R.: Interconnect tuning strategies for high-performance ICs. Proceedings Design, Automation and Test in Europe. 471 (1998)Google Scholar
  43. 43.
    Wimer, S.; Michaely, S.; Moiseev, K.; and Kolodny, A.: Optimal bus sizing in migration of processor design. IEEE Transactions on Circuits and Systems I. 53(5), 1089 (2006)CrossRefGoogle Scholar
  44. 44.
    Zhang, J. and Friedman, E. G.: Crosstalk modeling for coupled RLC interconnects with application to shield insertion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14(6), 641 (2006)CrossRefGoogle Scholar
  45. 45.
    De Micheli, G. and Benini, L.: Networks on Chips: Technology and Tools. Morgan Kaufmann, San Fransisco, CA (2006)Google Scholar
  46. 46.
    Jantsch, A. and Tenhunen, H. (Eds.): Networks on Chip. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  47. 47.
    Bolotin, E.; Cidon, I.; Ginosar, R.; and Kolodny, A.: Cost considerations in network on chip integration. VLSI J 38(1), 19 (2004)CrossRefGoogle Scholar
  48. 48.
    Popovich, M.; Mezhiba, A. V.; and Friedman, E. G.: Power Distribution Networks with On-Chip Decoupling Capacitors. Springer, New York (2007)Google Scholar
  49. 49.
    Barger, A.; Goren, D.; and Kolodny, A.: Simple criterion for maximizing data rate in NoC links. 10th IEEE Workshop on Signal Propagation on Interconnects, Berlin, (2006)Google Scholar
  50. 50.
    Otten, R. H.; and Brayton, R. K.: Planning for performance. In Proc. DAC-127. (1998)Google Scholar
  51. 51.
    Moreinis, M.; Morgenshtein, A.; Wagner, I. A.; and Kolodny, A.: Repeater insertion combined with LGR methodology for on-chip interconnect timing optimization. Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 125 (2004)Google Scholar
  52. 52.
    Moiseev, K.; Wimer, S.; and Kolodny, A.: On optimal irdering of signals in parallel wire bundles. Integration – the VLSI Journal. 41, 253–268 (2008)Google Scholar
  53. 53.
    Moiseev, K.; Kolodny, A.; and Wimer, S.: Timing-aware power-optimal ordering of signals. ACM Transactions on Design Automation of Electronic Systems. 13(4), Article 65, Sept (2008)Google Scholar
  54. 54.
    Morgenshtein, A.; Friedman, E.G.; Ginosar, R.; and Kolodny, A.: Timing optimization in logic with interconnect. Proceedings of the ACM/IEEE International Workshop on System Level Interconnect Prediction, pp. 19–26, April (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of EE, Technion IITHaifaIsrael

Personalised recommendations