Electroless Deposition Processes and Tools



Electroless deposition, which was introduced in 1946 by Brenner and Riddell [1], is a type of electrochemical deposition that is gaining interest in semiconductor and related applications. Electroless deposition utilizes complementary electrochemical reactions to cause metal deposition. The oxidation of a reducing agent supplies the electrons needed for reducing metal ions to their metallic state [2]. This encompasses both immersion (displacement) deposition reactions and autocatalytic reactions. One should use electroless deposition in cases where it is desirable to deposit metal on non-conducting surfaces or to deposit metal selectively to certain underlying materials, especially if there is no possibility to have a continuous conductive underlayer. Current applications of interest in the microelectronics industry include copper deposition for seed layer and interconnect metallization, nickel and gold depositions for contact metallurgy in microelectronics packaging and related applications, and cobalt–tungsten alloys as diffusion barrier for copper interconnects.


Gold Deposition Copper Deposition Displacement Reaction Electroless Nickel Electroless Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brenner, A. and Riddell, G. E.: Temperature coefficients for proving rings. J. Res. Natl. Bur. Stan. 37, 31 (1946)Google Scholar
  2. 2.
    Mallory, G. O. and Hajdu, J. B.: Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, FL (1990)Google Scholar
  3. 3.
    Dubin, V. M.; Shacham-DiamandY.; Zhao, B.; Vasudev, P. K.; and Ting, C. H.: Selective and blanket electroless copper deposition for ultralarge scale integration. J. Electrochem. Soc. 144(3), 898 (1997)CrossRefGoogle Scholar
  4. 4.
    Hsu, H.-H.; Lin, K.-H.; Lin, S.-J.; and Yeh, J.-W.: Electroless Copper Deposition for Ultralarge-Scale Integration. J. Electrochem. Soc. 148(1), C47 (2001)CrossRefGoogle Scholar
  5. 5.
    Lee, C. H.; Lee, S. C.; and Kim, J. J.: Improvement of Electrolessly Gap-Filled Cu Using 2,2’-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS). Electrochem. Solid-State Lett. 8, C110 (2005)CrossRefGoogle Scholar
  6. 6.
    Lee, C. H.; Cho, S. K.; and Kim, J. J.: Electroless Cu bottom-up filling using 3-N,N-dlmethylaminodithiocarbamoyl-1-propanesulfonic acid. Electrochem. Solid-State Lett. 8(11), J27 (2005)CrossRefGoogle Scholar
  7. 7.
    Hsu, H.-H.; Teng, C.-W.; Lin, S.-J.; and Yeh, J.-W.: Sn/Pd catalyzation and electroless Cu deposition on TaN diffusion barrier layers. J. Electrochem. Soc. 149(3), C143 (2002)CrossRefGoogle Scholar
  8. 8.
    Kim, Y.-S.; Bae, D.-L.; Yang, H.; Shin, H.-S.; Wang, G.-W.; Senkevich, J. J.; and Lu, T.-M.: Direct copper electroless deposition on a tungsten barrier layer for ultralarge scale integration. J. Electrochem. Soc. 152(2), C89 (2005)CrossRefGoogle Scholar
  9. 9.
    Shacham-DiamandY.: Electroless copper deposition using glyoxylic acid as reducing agent for ultra-large-scale-integration metallization. Electrochem. Solid-State Lett. 3(6), 279 (2000)CrossRefGoogle Scholar
  10. 10.
    Shingubara, S.; Wang, Z.; Yaegashi, O.; Obata, R.; Sakaue, H.; and Takahagi, T.: Bottom-up fill of copper in deep submicrometer holes by electroless plating. Electrochem. Solid-State Lett. 7(6), C78 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, Z.; Ida, T.; Sakaue, H.; Shingubara, S.; and Takahagi, T.: Electroless plating of copper on metal-nitride diffusion barriers initiated by displacement plating. Electrochem. Solid-State Lett. 6(3), C38 (2003)CrossRefGoogle Scholar
  12. 12.
    Honma, H. and Kobayashi, T.: Electroless copper deposition process using glyoxylic acid as a reducing agent. J. Electrochem. Soc. 141(3), 730 (1994)CrossRefGoogle Scholar
  13. 13.
    Li, J. and Kohl, P. A.: The acceleration of nonformaldehyde electroless copper plating. J. Electrochem. Soc. 149(12), C631 (2002)CrossRefGoogle Scholar
  14. 14.
    Li, J. and Kohl, P. A.: The deposition characteristics of accelerated nonformaldehyde electroless copper plating. J. Electrochem. Soc. 150(8), C558 (2003)CrossRefGoogle Scholar
  15. 15.
    Schumacher, R.; Pesek, J. J.; and Melroy, O. R.: Kinetic analysis of electroless deposition of copper. J. Phys. Chem. 89(20), 4338 (1985)CrossRefGoogle Scholar
  16. 16.
    Wiese, H. and Weil, K. G.: On the mechanism of electroless copper deposition. Ber. Bunsenges. Phys. Chem. 91, 619 (1987)Google Scholar
  17. 17.
    Weber, C. J.; Pickering, H. W.; and Weil, K. G.: Surface development during electroless copper deposition. J. Electrochem. Soc. 144(7), 2364 (1997)CrossRefGoogle Scholar
  18. 18.
    Bindra, P. and Roldan, J.: Mechanisms of electroless metal plating. J. Electrochem. Soc. 132(11), 2581 (1985)CrossRefGoogle Scholar
  19. 19.
    Dubin, V. M.: Selective electroless Ni-Cu(P) deposition for via hole filling and conductor pattern cladding in VLSI multilevel interconnection structures. J. Electrochem. Soc. 139(2), 633 (1992)CrossRefGoogle Scholar
  20. 20.
    Hsu, H.-H.; Hsieh, C.-C.; Chen, M.-H.; Lin, S.-J.; and Yeh, J.-W.: Displacement activation of tantalum diffusion barrier layer for electroless copper deposition. J. Electrochem. Soc. 148(9), C590 (2001)CrossRefGoogle Scholar
  21. 21.
    Hong, S. W.; Shin, C.-H.; and Park, J.-W.: Palladium activation on TaNx barrier films for autocatalytic electroless copper deposition. J. Electrochem. Soc. 149(1), G85 (2002)CrossRefGoogle Scholar
  22. 22.
    Hong, S. W. and Park, J.-W.: Effect of nitrogen content in TaNx (x = 0–1) barrier substrates on electroless copper deposition. Electrochem. Solid-State Lett. 5(12), C107 (2002)CrossRefGoogle Scholar
  23. 23.
    Hong, S. W.; Lee, Y. S.; Park, K.-C.; and Park, J.-W.: Nucleation and Growth of Electroless Palladium Deposition on Polycrystalline TiN Barrier films for Electroless Copper Deposition. J. Electrochem. Soc. 150(1), C16 (2003)CrossRefGoogle Scholar
  24. 24.
    Hsu, H.-H.; Yeh, J.-W.; and Lin, S.-J.: Repeated 3D nucleation in electroless Cu deposition and the grain boundary structure involved. J. Electrochem. Soc. 150(11), C813 (2003)CrossRefGoogle Scholar
  25. 25.
    Oh, Y.-J.; Cho, S. M.; and Chung, C.-H.: Control of topographical selectivity in palladium-activated electroless copper metallization. Electrochem. Solid-State Lett. 8(1), C1 (2005)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.; Li, H.; Shodiev, H.; and Suni, I. I.: Immersion/electroless deposition of Cu onto Ta. Electrochem. Solid-State Lett. 7, C67 (2004)CrossRefGoogle Scholar
  27. 27.
    Riedel, W.: Electroless Nickel Plating, Finishing Publications, Stevenge, England (1991)Google Scholar
  28. 28.
    Kohl, P. A.: In Modern Electroplating, 4th edition. Schlesinger, M.; and Paunovic, M., Eds. John Willey & Sons, New York (2000)Google Scholar
  29. 29.
    Djokic, S. S.: Electroless Deposition of Cobalt Using Hydrazine as a Reducing Agent. J. Electrochem. Soc. 144(7), 2358 (1997)CrossRefGoogle Scholar
  30. 30.
    Takano, N.; Hosoda, N.; Yamada, T.; and Osaka, T.: Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution. J. Electrochem. Soc. 146(4), 1407 (1999)CrossRefGoogle Scholar
  31. 31.
    Lin, K.-L. and Wu, C.-H.: Structural evolution of electroless nickel bump. J. Electrochem. Soc. 150(5), C273 (2003)CrossRefGoogle Scholar
  32. 32.
    Watanabe, H. and Honma, H.: Fabrication of nickel microbump on aluminum using electroless nickel plating. J. Electrochem. Soc. 144(2), 471 (1997)CrossRefGoogle Scholar
  33. 33.
    Xu, H.; Brito, J.; and Sadik, O. A.: Mechanism of stabilizer acceleration in electroless nickel at wirebond substrates. J. Electrochem. Soc. 150(11), C816 (2003)CrossRefGoogle Scholar
  34. 34.
    Rohan, J. F.; Murphy, P. A.; and Barrett, J.: Zincate-free, electroless nickel deposition on aluminum bond pads. J. Electrochem. Soc. 152(1), C32 (2005)CrossRefGoogle Scholar
  35. 35.
    Heiman, J.: Deposition of metals on aluminum by immersion from solutions containing fluorides. J. Electrochem. Soc. 95(5), 205 (1949)CrossRefGoogle Scholar
  36. 36.
    Lashmore, D. S.: Immersion coatings on aluminum. Plat. Surf. Finish. 67(1), 37 (1980)Google Scholar
  37. 37.
    Datta, M.; Merritt, S. A.; and Dagenais, M.: Electroless remetallization of aluminum bond pads on CMOS driver chip for flip-chip attachment to vertical cavity surface emitting lasers (VCSEL’s). IEEE Transactions on Components and Packaging Technology 22, 299 (1999)CrossRefGoogle Scholar
  38. 38.
    Wei-Chin, N.; Tze-Man, K.; Chen, W.; and Guo-Jun, Q.: The Effects of Immersion Zincation to the Electroless Nickel Under-bup Materials in Microelectronic Packaging. 1998 IEEE/CPMT Electronics Packaging Technology Conference 89 (1998)Google Scholar
  39. 39.
    Harman, G. G.: Wire Bonding in Microelectronics. McGraw-Hill, New York (1997).Google Scholar
  40. 40.
    Ali, H. O. and Christie, I. R. A.: A review of electroless deposition processes. Gold. Bull. 17(4), 118 (1984)Google Scholar
  41. 41.
    Simon, F.: Deposition of gold without external current source. Gold. Bull. 26, 14 (1993)Google Scholar
  42. 42.
    Sargent, A. and Sadik, O. A.: Probing the mechanism of electroless gold plating using an EQCM: II. Effect of bath additives on interfacial plating processes. J. Electrochem. Soc. 148(6), C413 (2001)CrossRefGoogle Scholar
  43. 43.
    Krasopoulos, A. V.; Li, J.; Josowicz, M.; and Janata, J.: Rapid substitution of gold for aluminum metallization on integrated circuits. J. Electrochem. Soc. 144(3), 1070 (1997)CrossRefGoogle Scholar
  44. 44.
    Sargent, A.; Sadik, O. A.; and Matienzo, L. J.: Probing the mechanism of electroless gold plating using an electrochemical quartz crystal microbalance I. Elucidating the nature of reactive intermediates in dimethylamine borane. J. Electrochem. Soc. 148(4), C257 (2001)CrossRefGoogle Scholar
  45. 45.
    Okinaka, Y.: Electroless gold deposition using borohydride of dimethylamine borane as reducing agent. Plating 57(9), 914 (1970)Google Scholar
  46. 46.
    Okinaka, Y.: An electrochemical study of electroless gold-deposition reaction. J. Electrochem. Soc. 120(6), 739 (1973)CrossRefGoogle Scholar
  47. 47.
    Iacovangelo, C. D. and Zarnoch, K. P.: Substrate-catalyzed electroless gold plating. J. Electrochem. Soc. 138(4), 983 (1991)CrossRefGoogle Scholar
  48. 48.
    Osaka, T.; Misato, T.; Sato, J.; Akiya, H.; Homma, T.; Kato, M.; Okinaka, Y.; and Yoshioka, O.: Evaluation of substrate (Ni)-Catalyzed electroless gold plating process. J. Electrochem. Soc. 147(3), 1059 (2000)CrossRefGoogle Scholar
  49. 49.
    Shaigan, N.; Ashrafizadeh, S. N.; Bafghi, M. S. H.; and Rastegari, S.: Elimination of the corrosion of Ni-P substrates during electroless gold plating. J. Electrochem. Soc. 152(4), C173 (2005)CrossRefGoogle Scholar
  50. 50.
    Sato, J.; Kato, M.; Otani, H.; Homma, T.; Okinaka, Y.; Osaka, T.; and Yoshioka, O.: Substrate (Ni)-Catalyzed electroless gold deposition from a noncyanide bath containing thiosulfate and sulfite. J. Electrochem. Soc. 149(3), C168 (2002)CrossRefGoogle Scholar
  51. 51.
    Kato, M.; Sato, J.; Otani, H.; Homma, T.; Okinaka, Y.; Osaka, T.; and oshioka, O.: Substrate (Ni)-Catalyzed electroless gold deposition from a noncyanide bath containing thiosulfate and sulfite. J. Electrochem. Soc. 149(3), C164 (2002)CrossRefGoogle Scholar
  52. 52.
    Ohtani, Y.; Horiuchi, A.; Yamaguchi, A.; Oyaizu, K.; and Yuasa, M.: Non-Cyanide electroless gold plating using polyphenols as reducing agents. J. Electrochem. Soc. 153(1), C63 (2006)CrossRefGoogle Scholar
  53. 53.
    Sato, Y.; Osawa, T.; Kaieda, K.; and Kobayakawa, K.: Cyanide-free electroless gold plating from a bath containing disulfitoaurate and thiourea of its derivatives. Plat. Surf. Finish. 81(9), 74 (1994)Google Scholar
  54. 54.
    Osaka, T.; Kodera, A.; Misato, T.; Homma, T.; Okinaka, Y.; and Yoshioka, O.: Electrodeposition of soft gold from a thiosulfate-sulfite bath for electronics applications. J. Electrochem. Soc. 144(10), 3462 (1997)CrossRefGoogle Scholar
  55. 55.
    Osaka, T.; Kato, M.; Sato, J.; Yoshizawa, K.; Homma, T.; Okinaka, Y.; and Yoshioka, O.: Mechanism of sulfur inclusion in soft gold electrodeposited from the thiosulfate-sulfite bath. J. Electrochem. Soc. 148(10), C659 (2001)CrossRefGoogle Scholar
  56. 56.
    Lopatin, S.; Shacham-DiamandY.; Dubin, V.; and Vasudev, P. K.: Selective Electroless CoWP Deposition onto Pd-Activated In-Laid Cu Lines, 1997 VMIC, 219 (1997)Google Scholar
  57. 57.
    O’Sullivan, E. J.; Schrott, A. G.; Paunovic, M.; Sambucetti, C. J.; Marino, J. R.; Bailey, P. J.; Kaja, S.; and Semkow, K. W.: Electrolessly deposited diffusion barriers for microelectronics. IBM J. Res. Dev. 42(5), 607 (1998)CrossRefGoogle Scholar
  58. 58.
    Itabashi, T.; Nakano, H.; and Akahoshi, H.: Electroless Deposited CoWB for Copper Diffusion Barrier Metal, IITC (2002)Google Scholar
  59. 59.
    Petrov, N.; Sverdlov, Y.; and Shacham-DiamandY.: Electrochemical Study of the Electroless Deposition of Co(P) and Co(W,P) Alloys, JECS 149(4), C187 (2002)Google Scholar
  60. 60.
    Aly, I. H. M.; Younan, M. M.; and Nageeb, M. T.: Autocatalytic (Electroless) Deposition of Ternary Nickel-Cobalt-Phosphorus Alloy, Plat. Surf. Fin. 37 (2003)Google Scholar
  61. 61.
    Wirth, A.; Mourier, T.; Turek, P.; Mayer, D.; and Moussavi, M.: Evaluation of Novel Electrolessly Deposited Diffusion Barriers for Copper Interconnects, IITC? JECS?Google Scholar
  62. 62.
    Lopatin, S.; Shacham-DiamandY.; Dubin, V.; Vasudev, P. K.; Kim, Y.; and Smy, T.: Characterization of electroless Cu, Co, Ni and their alloys for ULSI metallization, MRS Conf. Proc. ULSI XIII 437 (1998)Google Scholar
  63. 63.
    Shacham-DiamandY.; and Sverdlov, Y.: Multi-layer deposition of electroless copper, nickel, cobalt and their alloys on silicon for MEMS and ULSI applications. MRS Conf. Proc. ULSI XIV 103 (1999)Google Scholar
  64. 64.
    Min, W. S.; Lantasov, Y.; Palmans, R.; Maex, K.; and Lee, D. N.: The Formation of Pd Seeded Copper Layer on TiN Substrates by Electroless Deposition. Advanced Metallization Conference in 1998 (AMC 1998) Materials Research Soc. (1999)Google Scholar
  65. 65.
    Maex, K.; Brongersma, S. H.; Lantasov, Y.; RichardE.; Palmans, R.; and Vervoort, I.: Integration of Electroless and Electrolytic Cu in the IC Back End of Line Technologies. Electrochemical Technology Applications in Electronics III. Madore, C.; Osaka, T.; Romankiw, L. T.; and Yamazaki Y., Eds. PV 99(34), 71 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Semitool Inc.KalispellUSA

Personalised recommendations