Electrochemical Processing Tools for Advanced Copper Interconnects: An Introduction



The change from vacuum-deposited aluminum to electroplated copper in 1997 brought about a paradigm shift in interconnect technology and in chip making [1]. Since then, most of the leading chip manufacturers have converted to electroplated Cu technology for chip interconnects. Cu interconnects are fabricated by dual Damascene process which is referred to a metallization patterning process by which two insulator (dielectric) levels are patterned, filled with copper, and planarized to create a metal layer consisting of vias and lines. The process steps consist of laying a sandwich of two levels of insulator and etch stop layers that are patterned as holes for vias and troughs for lines. They are then filled with a single metallization step. Finally, the excess material is removed, and the wafer is planarized by chemical mechanical polishing (CMP). While finer details of exact sequence of fabrication steps vary, the end result of forming a metal layer remains the same in which vias are formed in the lower layer, and trenches are formed in the upper layer. Electroplating enables deposition of Cu in via holes and overlying trenches in a single step thus eliminating a via/line interface and significantly reducing the cycle time. Due to these reasons and due to relatively less expensive tooling, electroplating is a cost-effective and efficient process for Cu interconnects [2, 3]. Compared with vacuum deposition processes, electroplated Cu provides improved super filling capabilities and abnormal grain growth phenomena. These properties contribute significantly to improved reliability of Cu interconnects. With the proper choice of additives and plating conditions, void-free, seam-free Damascene deposits are obtained which eliminates surface-like fast diffusion paths for Cu electromigration.


Chemical Mechanical Polishing Electroless Deposition Chemical Mechanical Polishing Process Copper Interconnect Etch Stop Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Edelstein, D. C.; Heidenreich, J.; Goldblatt, R.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Motsiff, W.; Simon, A.; Dukovic, J.; Wachnik, R.; Rathore, H.; Schulz, R.; Su, L.; Luce, S.; and Slattery, J.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology. Tech. Dig. IEEE Intl. Eletron. Devices Conference 773 (1997)Google Scholar
  2. 2.
    Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42(5), 567 (1998)CrossRefGoogle Scholar
  3. 3.
    Datta, M.: Electrochemical processing technologies in chip fabrication: Challenges and opportunities. Electrochim. Acta 48(20–22), 2975 (2003)CrossRefGoogle Scholar
  4. 4.
    Moffat, T. P.: Bonewich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; and Josell, D.: Superconformal electrodeposition of copper in 500–90 nm features. J. Electrochem. Soc. 147, 4524 (2000)CrossRefGoogle Scholar
  5. 5.
    Kardos, O.: Current distribution on microprofiles, Part I, II, III. Plating, 61, 129, 229, 316 (1974)Google Scholar
  6. 6.
    Kruglikov, S. S.; Kudriavtsev, N. T.; Vorobiova, G. F.; Antonov, A. Ya.: On the mechanism of levelling by addition agents in electrodeposition of metals. Electrochim. Acta 10(3), 253 (1965)CrossRefGoogle Scholar
  7. 7.
    Dukovic, J. O.; Tobias, C. W.: Simulation of Leveling in Electrodeposition. J. Electrochem. Soc. 137(12), 3748 (1990)CrossRefGoogle Scholar
  8. 8.
    Madore, C.; Matlosz, M.; and Landolt, D.: Blocking inhibitors in cathodic leveling. J. Electrochem. Soc. 143, 3927 (1996)CrossRefGoogle Scholar
  9. 9.
    Ritzdorf, T.: In New Trends in Electrochemical Technology, Microelectronic Packaging, Datta, M.; Osaka, T.; Schultze, J. W., Eds. CRC Press, New York, 3, 471 (2005)Google Scholar
  10. 10.
    Watts, D. K.; Kimura, N.; and Tsujimura, M.: In New Trends in Electrochemical Technology, Microelectronic Packaging, Datta, M.; Osaka, T.; Schultze, J. W., Eds. New York, 3, 437 (2005)Google Scholar
  11. 11.
    Bohr, M.: Technology Challenges from Transistor to Packages. Intel Development Forum, Fall (2004)Google Scholar
  12. 12.
    Martin, S. J.; Godschalsx, J. P.; Mills, M. E.; Shaffer, E. O.; and Townsend, P. H.: Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Adv. Mater. 12(23), 1769 (2000)CrossRefGoogle Scholar
  13. 13.
    Basol, B. M.: Mechanically induced superfilling of low-aspect-ratio cavities in an electrochemical mechanical deposition process. J. Electrochem. Soc. 151, C765 (2004)CrossRefGoogle Scholar
  14. 14.
    Dubin, V. M.; Simka, H. S.; Shankar, S.; Moon, P.; Marieb, T.; and Datta, M.: In New Trends in Electrochemical Technology, Microelectronic Packaging, Datta, M.; Osaka, T.; Schultze, J. W., Eds. CRC Press, New York, 3, 31 (2005)Google Scholar
  15. 15.
    Chou, S.: Extending Moore’s Law in the Nanotechnology era. Intel technology and Manufacturing Briefing. Intel Development Forum, February (2004)Google Scholar
  16. 16.
    Hu, C. K.; Gignac, L.; Rosenberg, R.; Liniger, E.; Rubino, J.; Sambucetti, C.; Domenicucci, A.; Chen, X.; and Stamper, A. K.: Reduced electromigration of Cu wires by surface coating. Appl. Phys. Lett. 81, 1782 (2002)CrossRefGoogle Scholar
  17. 17.
    Hu, C. K.; Gignac, L.; Liniger, E.; Herst, B.; Rath, D. L.; Chen, S. T.; Kaldor, S.; Simon, A.; and Wang, W.-T.: Comparison of Cu electromigration lifetime in Cu interconnects coated with various caps. Appl. Phys. Lett. 83, 869 (2003)CrossRefGoogle Scholar
  18. 18.
    Padhi, D.; and Dixit, G.: Key Process Parameters for Copper Electromigration. Solid State Tech. 46(11), (2003)Google Scholar
  19. 19.
    Moon, P.; Dubin, V.; Johnston, S.; Leu,J.; Raol, K.; and Wu, C.: Process Roadmap and Challenges for Metal Barriers. Proc. IEDM 141 (2003)Google Scholar
  20. 20.
    Lee, B.: Electroless CoWP Boosts Copper Reliability, Device Performance. Semiconductor International, July (2004)Google Scholar
  21. 21.
    Tonegawa, T.; Hiroi, M.; Motoyama, K.; Fujii, K.; and Miyamoto, H.: Suppression of bimodal stress-induced voiding using high-diffusive dopant from Cu-alloy seed layer. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 216 (2003)Google Scholar
  22. 22.
    Padhi, D.; Gandikota, S.; McGujrk, C.; Ngyuen, H. B.; Ramanathan, S.; S. Parikh, and Dixit, G.: Investigation of Electromigration Issues in Copper Interconnects. Proc. Adv. Metall. Conf., San Diego, 337 (2002)Google Scholar
  23. 23.
    Rossnagel, S.: The Latest in Ru-Cu Interconnect Technology. Solid State Technology, online February (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cooligy, Inc.Mountain ViewUSA

Personalised recommendations