Advertisement

Copper Post-CMP Cleaning

  • D. Starosvetsky
  • Y. Ein-Eli
Chapter

Abstract

Copper on-chip interconnects Damascene technology utilizes chemical mechanical polishing (CMP) in order to remove copper overburden after its electro deposition and achieve global planarization of patterned surface. CMP is a simultaneous action of mechanical overburden metal removal and its electrochemical dissolution. It is performed with the movement of a polisher pad in acidic or alkaline aqueous CMP electrolytes (slurry) containing dispersive abrasive particles (Al2O3 or SiO2), pH buffer, certain electrolyte salts to control ionic strength, oxidants, and corrosion inhibitors. Mechanical and chemical interactions with a patterned wafer surface introduce different defects and contaminations in interlayer dielectric (ILD) surfaces and copper layers. These can either be mechanical (physical) or chemical-based defects and contaminants [1–6].

Keywords

Corrosion Product Abrasive Particle Copper Surface Chemical Mechanical Polishing Wafer Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zantye, P. B.; Kumar, A.; and Sikder, A. K.: Chemical mechanical planarization for microelectronics applications. Materials Since and Engineering: Reports, Elsevier B.V. 45(3–6), 89 (2005)Google Scholar
  2. 2.
    Li, S. H. and Miller, R.: Chemical mechanical polishing in silicon processing. Academic Press, New York, Semiconduct. Semimet. 63, (2000)Google Scholar
  3. 3.
    Park, J.-G. and Busnaina, A.: Copper Post CMP cleaning and the Effect of additives. Semiconduct. Int. 28, 39 (2005)Google Scholar
  4. 4.
    Chen, P.-L.; Chen, J.-H.; Tsai, M.-S.; Dai, B. T.; and Yeh, C. F.: Post-Cu CMP cleaning for colloidal silica abrasive removal. Microelectron. Eng. 75, 352 (2004)CrossRefGoogle Scholar
  5. 5.
    Biverina, A.; Bernard, H.; Palleau, J.; Torres, J.; and Tardif, F.: Copper Photocorrosion Phenomenon during Post CMP Cleaning. Electrochem. Solid-State Lett. 3(3), 156 (2000)CrossRefGoogle Scholar
  6. 6.
    Zhang, L.; Raghavan S.; and Weling, M.: Minimization of chemical-mechanical planarization (CMP) defects and post-CMP cleaning. J. Vac. Sci. Technol. B 17(5), 2248 (1999)CrossRefGoogle Scholar
  7. 7.
    Liu, C.-W.; Dai, B.-T.; and Yeh, C.-F.: Post cleaning of chemical mechanical polishing process. Appl. Surf. Sci. 92, 176 (1996)CrossRefGoogle Scholar
  8. 8.
    Carpio, R.; Farkas, J.; and Jairath, R.: Initial study on copper CMP slurry chemistries. Thin Solid Films 266(2), 238 (1995)CrossRefGoogle Scholar
  9. 9.
    Burdick, G. M.; Berman, N. S.; and Beaudoin, S. P.: A theoretical analysis of brush scrubbing following chemical mechanical planarization. J. Electrochem. Soc. 150, G140 (2003)CrossRefGoogle Scholar
  10. 10.
    Ramachandran, S.; Busnaina, A. A.; Small, R.; Shang, C.; and Chen, Z.: Non contact post-CMP cleaning of thermal oxide wafers using chelating basic chemistry, Internet web site: http// http://www.ekctech.com/post-cmp.htm
  11. 11.
    Olim, M.: A theoretical evaluation of megasonic cleaning for submicron particles. J. Electrochem. Soc. 144, 3657 (1997)CrossRefGoogle Scholar
  12. 12.
    Busnaina, A. A. and Dai, F.: Megasonic cleaning. Semicond. Int. 20, 85 (1997)Google Scholar
  13. 13.
    Isrealachvili, J.: Intermolecular and surface forces. 2nd ed., Academic, San Diego, (1994)Google Scholar
  14. 14.
    Shen, J. J.; Costas, W. D.; Cook, L. M.; and Farber, J.: The effects of post chemical mechanical planarization buffing on defect density of tungsten and oxide wafers. J. Electrochem. Soc. 145(12), 4240 (1998)CrossRefGoogle Scholar
  15. 15.
    Tardif, F.; Beverina, A.; Bernard, H.; Constant, I.; and Robin, F.: Photo-Corrosion effects during copper interconnect cleaning. The Electrochemical Society and the Electrochemical Society of Japan Meeting, Abstracts, Honolulu, HI 196, (1999)Google Scholar
  16. 16.
    Holander, O. and Industrial, B.: Reviews on corrosion inhibitor science and technology. Ed. A. Raman, P. Labine, NACE, Huston. ll-13-1-16 (1989)Google Scholar
  17. 17.
    Graham, M. G.: Reviews on corrosion inhibitor science and technology. Ed. A. Raman, P. Labine, NACE, Huston. 1-8-1-32 (1989)Google Scholar
  18. 18.
    Thomas, J. G. N. and Tiller, A. K.: Formation and breakdown of surface films on copper in sodium hydrogen carbonate and sodium chloride solutions. I. Effects of anion concentrations. Br. Corrosion J. 7, 256 (1972)Google Scholar
  19. 19.
    Ehlers, C. B.; Villegas, I.; and Stickney, J. L.: The surface chemistry of copper(100) in hydrochloric acid solutions as a function of potential: a study by LEED, Auger spectroscopy and depth profiling. J. Electroanal. Chem. 284(2), 403 (1990)CrossRefGoogle Scholar
  20. 20.
    Gomez Becerra, J.; Salvareza, R. C.; and Arvia, A. J.: Electrochemical behaviour of copper in aqueous solution containing potassium ethylxanthate. J. Appl. Electrochem. 17, 779 (1987)CrossRefGoogle Scholar
  21. 21.
    Elsner, C. I.; Salvareza, R. C.; and Arvia, A. J.: The influence of halide ions at submonolayer levels on the formation of oxide layer and electrodissolution of copper in neutral solutions. Electrochim. Acta 33(12), 1735 (1988)CrossRefGoogle Scholar
  22. 22.
    Frankel G. S.; Schrot, A. G.; Isaacs, H. S.; Horkans, J.; and Andricacos, J.: Behavior of Cu(P) and oxygen free high conductivity cu anodes under electrodeposition conditions. J. Electrochem. Soc. 140(4), 959 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Starosvetsky
    • 1
  • Y. Ein-Eli
    • 1
  1. 1.Department of Material Science and EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations