Electrochemical View of Copper Chemical-Mechanical Polishing (CMP)



Copper is the metal of choice, replacing aluminum in integrated circuit interconnections [1]. This switch was emerged and stimulated due to copper advantage characteristics, such as low resistivity and high immunity to electro-migration, which in turn result in greater circuit reliability and markedly higher clock frequency. Copper dual-Damascene technology includes two main electrochemical steps. First step is the electrochemical copper deposition (or copper electroplating) into trenches and vias. Second electrochemical step in copper Damascene technology utilizes chemical–mechanical polishing or planarization (CMP) aiming at the removal of overburden copper after its electrochemical deposition. CMP primer objective is to achieve a global planarization of patterned surface. CMP appears to be the most promising pattern delineation technique [2–6]. Planarization via CMP process is achieved by simultaneous actions of both mechanical abrasion and electrochemical dissolution of the planarized metal.


Passive Film Open Circuit Potential Anodic Current Copper Surface Nitric Acid Concentration 


  1. 1.
    Murarka, S. P.; Verner, I. V.; and Gutman, R. J.: Copper – fundamental mechanisms for microelectronic applications, John Wiley & Sons, Inc., New York, 337 (2000)Google Scholar
  2. 2.
    Sethuraman, A. R.; Wang, J.-F.; and Cook, L. M.: Review of planarization and reliability aspects of future interconnect materials. J. Electron. Mater. 25(10), 1617 (1996)CrossRefGoogle Scholar
  3. 3.
    Shinn, G. B.; Korthuis, V.; and Wilson, A. M.: Chemical-mechanical polishing. In. Handbook of semiconductor manufacturing technology. Nishi, Y. and Doering, R., Eds. Marcel Dekker, Inc., New York, 415 (2000)Google Scholar
  4. 4.
    Li, S. H. and Miller, R.: Chemical mechanical polishing in silicon processing. Academic Press, New York, Semiconduct. Semimet 63, (2000)Google Scholar
  5. 5.
    Zantye, P. B.; Kumar, A.; and Sikder, A. K.: Chemical mechanical planarization for microelectronics applications, Materials Since and Engineering: Reports, Elsevier B.V. 45(3–6), 89 (2005)Google Scholar
  6. 6.
    Steigerwald, J. M.; Murarka, S. P.; and Gutman, R. J.: Chemical mechanical planarization of microelectronic materials, John Wiley & Sons, Inc., New York, (1997)CrossRefGoogle Scholar
  7. 7.
    Singh, R. K. and Bajaj, R.: Advances in chemical-mechanical-planarization. MRS Bulletin 27(10), 743 (2002)Google Scholar
  8. 8.
    Babu, S. V.; Li, Y.; and Jindal, A.: Chemical mechanical planarization of Cu and Ta: Role of different slurry constituents. JOM 53(6), 50 (2001)CrossRefGoogle Scholar
  9. 9.
    Thakurta, D. G.; Schwendeman, D. W.; Gutmann, R. J.; Shankar, S.; Lei J.; and William, G.: Three-dimensional wafer-scale copper chemical–mechanical planarization model. Thin Solid Films 414(1), 78 (2002)CrossRefGoogle Scholar
  10. 10.
    Chen, K. W.; Wang, Y. L.; Liu, C. P.; Yang, K.; Chang, L.; Lo, K. Y.; and Liu, C. W.: Evaluation of advanced chemical mechanical planarization techniques for copper damascene interconnect. Thin Solid Films 447–448, 531 (2004).CrossRefGoogle Scholar
  11. 11.
    Kaufman, F. B.; Thompson, D. B.; Broadie, R. E.; et al.: Chemical-mechanical polishing for fabricating patterned tungsten metal features as chip interconnects. J. Electrochem. Soc. 138(11), 3460 (1991)CrossRefGoogle Scholar
  12. 12.
    Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions. 2nd US ed. NACE, Houston, TX, (1974)Google Scholar
  13. 13.
    Maurice, V.; Strehblow, H. H.; and Marcus, P.: In situ STM study of the initial stages of oxidation of Cu(111) in aqueous solution. Surface Science 458, 185 (2000)CrossRefGoogle Scholar
  14. 14.
    Chan, H. Y. H.; Takoudis, C. G.; and Weaver, M. J.: Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced raman spectroscopy. J. Phys. Chem. B 103, 357 (1999)CrossRefGoogle Scholar
  15. 15.
    Tromans, D. and Sun, R. J.: Anodic behavior of copper in weakly alkaline solutions. J. Electrochem. Soc. 139(7) 1945 (1992)CrossRefGoogle Scholar
  16. 16.
    Kautec, W. and Gordon II, J. G.: XPS studies of anodic surface films on copper electrodes. J. Electrochem. Soc. 137 2672 (1990)CrossRefGoogle Scholar
  17. 17.
    Zeidler, D.; Stavreva, Z.; Plötner, M.; and Drescher. K.: Characterization of Cu chemical mechanical polishing by electrochemical investigations. Microelectron. Eng. 33, 259 (1997)CrossRefGoogle Scholar
  18. 18.
    Luo, Q.; Campbell, D. R.; and Babu, S. V.: Chemical–mechanical polishing of copper in alkaline media. Thin Solid Films 311, 177 (1997)CrossRefGoogle Scholar
  19. 19.
    Steigerwald, J. M.; Zirpoli, R.; Murarka, S. P.; Price D.; and Gutman R. J.: Pattern geometry effects in the chemical-mechanical polishing of inlaid copper structures. J. Electrochem. Soc. 141, 2842 (1994)CrossRefGoogle Scholar
  20. 20.
    Steigerwald, J. M.; Murarka, S. P.; Gutmann, R. J.; and Duquette, D. J.: Effect of copper ions in the slurry on the chemical-mechanical polish rate of titanium. J. Electrochem. Soc. 141, 3512 (1994)CrossRefGoogle Scholar
  21. 21.
    Steigerwald, J. M.; Duquette, D. J.; Murarka, S. P.; and Gutmann, R. J.: Electrochemical potential measurements during the chemical-mechanical polishing of copper thin films. J. Electrochem. Soc. 142, 2379 (1995)CrossRefGoogle Scholar
  22. 22.
    Steigerwald, J. M.; Murarka, S. P.; Gutmann, R. J.; and Duquette, D. J.: Chemical processes in the chemical mechanical polishing of copper. Mater. Chem. Phys. 41, 217 (1995)CrossRefGoogle Scholar
  23. 23.
    Sainio, C. A.; Duquette, D. J.; Murarka S. P.; and Steigerwald, J. M.: Electrochemical effects in the chemical-mechanical polishing of copper for integrated circuits. J. Electrn. Mater. 25(10), 1593 (1996)CrossRefGoogle Scholar
  24. 24.
    Osseo-Asake, K. and Mishra, K. K.: Solution chemical constraints in the chemical-mechanical polishing of copper: Aqueous stability diagrams for the Cu-H2O and Cu-NH3-H2O systems. J. Electron. Mater. 25(10), 1599 (1996)CrossRefGoogle Scholar
  25. 25.
    Luo, Q.; Mackay, R. A.; and Babu, S. V.: Copper Dissolution in Aqueous Ammonia-Containing Media during Chemical Mechanical Polishing. Chem. Mater. 9(10), 2101 (1997)CrossRefGoogle Scholar
  26. 26.
    Carpio, R.; Farkas, J.; and Jairath, R.: Initial study on copper CMP slurry chemistries. Thin solid films 266, (1995)Google Scholar
  27. 27.
    Ein-Eli, Y.; Abelev, E.; Rabkin, E.; and Starosvetsky, D.: The Compatibility of Copper CMP Slurries with CMP Requirements. J. Electrochem. Soc. 150(9), C646 (2003)CrossRefGoogle Scholar
  28. 28.
    Ein-Eli, Y.; Rabinovich, E.; Rabkin, E.; and Starosvetsky, D.: Electrochemical view on copper chemical-mechanical planarization. Proceedings of the Electrochemical Society meeting, 2002–22 (Copper Interconnects, New Contact Metallurgies, Structures, and Low-k Interlevel Dielectrics) 211–225 (2003)Google Scholar
  29. 29.
    Kondo, S.; Sakuma, N.; Homma, Y.; Goto, Y.; Ohashi, N.; Yamaguchi, H.; and Owada, N. J.: Abrasive-Free Polishing for Copper Damascene Interconnection. J. Electrochem. Soc. 147(10), 3907 (2000)CrossRefGoogle Scholar
  30. 30.
    Graham, M. J.: Reviews on Corrosion Inhibitor Science and Technology. Eds. A. Raman, P. Labine. NACE, 1-8-1 – 32 (1989)Google Scholar
  31. 31.
    Holander, O.: Structure-activity relationship of triazole copper-corrosion inhibitor: rational development of enhanced activity inhibitors- Reviews on corrosion inhibitor science and technology. Eds. A. Raman, P. Labine, NACE, Huston. ll-13-1 – 16 (1989)Google Scholar
  32. 32.
    Hu, T. C.; Chiu, S. Y.; Dai, B. T.; Tsai, M. S.; and Tung, I.-C.: Nitric acid-based slurry with citric acid as an inhibitor for copper chemical mechanical polishing. Mater. Chem. Phys. 61, 169 (1999)CrossRefGoogle Scholar
  33. 33.
    Wang, M. T.; Tsai, M. S.; Liu, C.; Tseng, W. T.; Chang, T. C.; Chang, L. J.; and Chen, M. C.: Effects of corrosion environments on the surface finishing of copper chemical mechanical polishing. Thin solid Films 308–309, 518 (1997)CrossRefGoogle Scholar
  34. 34.
    Starosvetsky, D. and Ein-Eli, Y.: unpublished resultsGoogle Scholar
  35. 35.
    Poling, G. W.: Reflection Infrared Studies of Films Formed by BTA on Copper'. Corrosion Sci. 10, 359 (1970)CrossRefGoogle Scholar
  36. 36.
    Cotton, J. B. and Scholes, I. R.: Benzotriazole and related compounds as corrosion inhibitors for copper. Brit. Corr. J. 2, 1 (1967)Google Scholar
  37. 37.
    Mansfeld, F.; Smith, T.; and Parry, E. P.: Benzotriazole as corrosion inhibitor for copper. Corrosion 27, 289 (1971)Google Scholar
  38. 38.
    Stavreva, Z.; Zeidler, D.; Plotner, M.; and Drescher, K.: Chemical mechanical polishing of copper for multilevel metallization. Appl. Surf. Sci. 91(1–4), 192 (1995)CrossRefGoogle Scholar
  39. 39.
    Kondo, S.; Sakuma, N.; Homma, Y.; and Ohashi, N. J.: Slurry chemical corrosion and galvanic corrosion during copper chemical mechanical polishing. Jap. J. Appl. Phys. 39, 6216 (2000)CrossRefGoogle Scholar
  40. 40.
    Luo, Q.; Ramarajan, S.; and Babu, S. V.: Modification of the Preston equation for the chemical–mechanical polishing of copper. Thin Solid Films 335, 160 (1998)CrossRefGoogle Scholar
  41. 41.
    Hernandez, J.; Wrschka, P.; and Oehrlein, G. S.: Surface chemistry studies of copper chemical mechanical planarization. J. Electrochem. Soc. 148(7), G389 (2001)CrossRefGoogle Scholar
  42. 42.
    Nguyen, V.; Van Kranenburg, H.; and Woerlee, P.: Dependency of dishing on polish time and slurry chemistry in Cu CMP. Microelectronic Engineering 50, 403 (2000)CrossRefGoogle Scholar
  43. 43.
    Stavreva, Z.; Zeidler, D.; Plotner, M.; and Drescher, K.: Characteristics in chemical-mechanical polishing of copper: Comparison of polishing pads. Appl. Surf. Sci. 108(1), 39 (1997)CrossRefGoogle Scholar
  44. 44.
    Stavreva, Z.; Zeidler, D.; Plotner, M.; and Drescher, K.: Influence of process parameters on chemical-mechanical polishing of copper. Microelectron. Eng. 37/38, 143 (1997)CrossRefGoogle Scholar
  45. 45.
    Zeidler, D.; Stavreva, Z.; Plotner, M.; and Drescher, K.: Characterization of Cu chemical mechanical polishing by electrochemical investigations. Microelectron. Eng. 33, 259 (1997)CrossRefGoogle Scholar
  46. 46.
    Zeidler, D.; Stavreva, Z.; Plotner, M.; and Drescher, K.: The interaction between different barrier metals and the copper surface during the chemical-mechanical polishing. Microelectron. Eng. 37/38, 237 (1997)CrossRefGoogle Scholar
  47. 47.
    Zeidler, D.; Plotner, M.; and Drescher, K.: Endpoint detection method for CMP of copper. Microelectron. Eng. 50, 411 (2000)CrossRefGoogle Scholar
  48. 48.
    Kou, H. S.; and Tsai, W. T.: Effects of alumina and hydrogen peroxide on the chemical-mechanical polishing of aluminum in phosphoric acid base slurry. Mat. Chem. Phys. 69, 53 (2001)CrossRefGoogle Scholar
  49. 49.
    Stein, D. J.; Dale, L.; Hetherington, D.; and Cecchia, J. L.: Investigation of the kinetics of tungsten chemical mechanical polishing in potassium iodate-based slurries: II. Roles of colloid species and slurry chemistry. J. Electrochem. Soc. 146(5), 1934 (1999)CrossRefGoogle Scholar
  50. 50.
    Molodov, A. I.; Markosyan, G. N.; and Losev, V. V.: Laws of the Autodissolution of Copper in the Presence of H//2o//2. Soviet Electrochem. 18(9), 1052 (1982)Google Scholar
  51. 51.
    Hirabayashi, H.; Higuchi, M.; Kintoshita, M.; Kaneko, H.; Hayasaka, N.; Mase, K.; and Oshima, J.: Copper-based metal polishing solution and method for manufacturing semiconductor device. Proc. of the 2nd International CMP for ULSI Multilevel Interconnects, Conference (CMP-MIC) 119 (1996)Google Scholar
  52. 52.
    Ein-Eli, Y.; Abelev, E.; and Starosvetsky, D. J.: Electrochemical Behavior of Copper in Conductive Peroxide Solutions. Elecrochem. Soc. 151(4), G236 (2004)CrossRefGoogle Scholar
  53. 53.
    Ein-Eli, Y.; Starosvetsky, D.; and Abelev, E.: Electrochemical behavior of copper CMP in conductive peroxide solutions, proceedings of the electrochemical society,  2003–21 (Chemical Mechanical Planirazatio (CMP-VI)) 68 (2003)Google Scholar
  54. 54.
    Lee, S. M.; Choi, W.; Cracium, V.; Jung, S.-H.; Singh, R. K.: Electrochemical measurements to understand the dynamics of the chemically modified surface layer formation during copper CMP. MRS Spring Meeting, San Francisco, Symposium I, paper No. I4. 11 (2002)Google Scholar
  55. 55.
    Singh, R. K.; Lee, S. M.; Choi, K. S.; Basim, G. B.; Choi, W.; Chen, Z.; and Moudgil, B. M.: Fundamentals of slurry design for CMP of metal and dielectric materials. MRS Bull. 27(10), 752 (2002)Google Scholar
  56. 56.
    Ein-Eli, Y.; Abelev, E.; Auinat, M.; and Starosvetsky, D.: Observation of extended copper passivity in carbonate solutions and its future application in copper CMP. Electrochem. Solid-State Lett. 8(12), B69 (2005)CrossRefGoogle Scholar
  57. 57.
    Ein-Eli, Y.; Abelev, E.; Auinat, M.; and Starosvetsky, D.: Copper passivity in carbonate base solution and its application to chemical mechanical planarization (CMP). Proceedings of the 9th International Symposium on the Passivation of Metals and Semiconductors. Paris, France, June, 27th July, 1st, (2005)Google Scholar
  58. 58.
    Ein-Eli, Y.; Abelev, E.; and Starosvetsky, D.: Food Preservatives Serving as Nonselective Metal and Alloy Corrosion Inhibitors. Electrochem. Solid-State Lett. 9(1), B5 (2006)CrossRefGoogle Scholar
  59. 59.
    Ein-Eli, Y; and Starosvetsky, D.: unpublished resultsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations