Low-k Dielectrics

  • Yoshihiro HayashiEmail author


As CMOS transistors were scaled, interconnects to link them are also shrunk to reduce the line pitches [1–10]. As shown in Fig. 22.1, the interconnect pitches have been shrunk from 180 nm, 140 nm, and 100 nm for 65 [4], 45 [32], and 32 nm nodes [10] LSIs, respectively. To eliminate the interconnect parasitic capacitance, low-k dielectric films which have lower permittivity than the conventional silica (SiO2) dielectrics have been introduced. Figure 22.2 shows the technology trend of the k-value and the deposition process, in which the low-k films are deposited by spin-on-dielectric (SOD) method or plasma-enhanced CVD. In the case of SOD, precursor solution is poured on a rotated wafer, and the precursor film is heated to vaporize the solvent followed by reaction and densification to make a low-k film. In the case of PECVD [36, 42], on the other hand, precursor solution is vaporized with inert carrier gas such as He, and the precursor gas is introduced into PECVD chamber with RF power. The vaporized precursor gas is exited from plasma, depositing a low-k film on a wafer heated in high vacuum. The SOD method is advantageous to decrease the k-value, while PECVD method is superior in the adhesion strength due to the possibility of in-suite plasma surface treatment in vacuum just before the low-k deposition.


Adhesion Strength Parasitic Capacitance Porous Film Precursor Film PECVD Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hayashi, Y.: Impacts of low-k film on sub-100 nm-node, ULSI devices. IEEE Intl. Interconnect Tech. Conf., San Francisco, USA 145 (2002)Google Scholar
  2. 2.
    Takahashi, S.; Edahiro, M.; and Hayash, Y.: Interconnect design strategy: Structures, repeaters and materials with strategic system performance analysis (S 2 PAL) model. IEEE Trans. Electron Devices 48(2) 239, (2001)CrossRefGoogle Scholar
  3. 3.
    Davis, J. A. and Meindl, J. D.: Interconnect Technology and Design for Gigascale Integration. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  4. 4.
    Ueki, M.; Narihiro, M.; Ohtake, H.; Tagami, M.; Tada, M.; Ito, F.; Harada, Y.; Abe, M.; Inoue, N.; Arai, K.; Takeuchi, T.; Saito, S.; Onodera, T.; Furutake, N.; Hiroi, M.; Sekine, M.; and Hayashi, Y.: Highly reliable, 65 nm-node Cu dual Damascene interconnects with full porous-SiOCH (k=2.5) films for low-power ASICs. Symposium on VLSI Technology, Digest 60 (2004)Google Scholar
  5. 5.
    Tada, M.; Harada, Y.; Tamura, T.; Inoue, N.; Ito, F.; Yoshiki, M.; Ohtake, H.; Narihiro, M.; Tagami, M.; Ueki, M.; Hijioka, K.; Abe, M.; Takeuchi, T.; Saito, S.; Onodera, T.; Furutake, N.; Arai, K.; Fujii, K.; and Hayashi, Y.: A 65 nm-node, Cu interconnect technology using porous SiOCH film (k=2.5) covered with ultra-thin, low-k pore seal (k=2.7). IEEE IEDM2003, Technical Digest 35.2.1 (2003)Google Scholar
  6. 6.
    Kajita, A.; Usui, T.; Yamada, M.; Ogawa, E.; Katata, T.; Sakata, A.; Miyajima, H.; Kojima, A.; Kanamura, R.; Ohoka, Y.; Kawashima, H.; Tabuchi, K.; Nagahata, K.; Kato, Y.; Hayashi, T.; Kadomura, S.; and Shibata, H.: Highly reliable Cu/low-k dual-Damascene interconnect technology with hybrid (PAE/SiOC) dielectrics for 65 nm-node high performance eDRAM. IEEE Intl. Interconnect Tech. Conf., San Francisco, USA, 9 (2003)Google Scholar
  7. 7.
    Nakai, S.; Kojima, M.; Misawa, N.; Miyajima, M.; Asai, S.; Inagaki, S.; Iba, Y.; Ohba, T.; Kase, M.; Kitada, H.; Satoh, S.; Shimizu, N.; Sugiura, I.; Sugimoto, F.; Setta, Y.; Tanaka, T.; Tamura, N.; Nakaishi, M.; Nakata, Y.; Nakahira, J.; Nishikawa, N.; Hasegawa, A.; Fukuyama, S.; Fujita, K.; Hosaka, K.; Horiguchi, N.; Matsuyama, H.; Minami, T.; Minamizawa, M.; Morioka, H.; Yano, E.; Yamaguchi, A.; Watanabe, K.; Nakamura, T.; and Sugii, T.: A 65 nm CMOS Technology with High Performance and Low Leakage Transistor, a 0.55 μm 6T-SRAM cell and Robust hybrid-ULK/Cu Interconnects for Mobile Multimedia Applications. Tech. Dig. IEEE IEDM, 11.31 (2003)Google Scholar
  8. 8.
    Jeng, C. C.; Wan, W. K.; Lin, H. H.; Ming-Shuo L.; Tang, K. H.; Kao, I. C.; Lo, H. C.; Chi, K. S.; Huang, T. C.; Yao, C. H.; Lin, C. C.; Lei, M. D.; Hsia, C. C.; and Mong-Song L.: BEOL process integration of 65 nm Cu/low k interconnects. IEEE IITC 2004, 199 (2004)Google Scholar
  9. 9.
    Lee, K.-W.; Shin, H. J.; Hwang, J. W.; Nam, S. W.; Moon, Y. J.; Wee, Y. J.; Kim, I. G.; Park, W. J.; Kim, J. H.; Lee, S. J.; Park, K. K.; Kang, H.-K.; and Suh, K.-P.: Highly manufacturable Cu/low-k dual Damascene process integration for 65 nm technology node. IEEE Intl. Interconnect Tech. Conf., (San Francisco, USA) 57 (2004)Google Scholar
  10. 10.
    Tada, M.; Yamamoto, H.; Ito, F.; Narihiro, M.; Ueki, M.; Inoue, N.; Abe, M.; Saito, S.; Takeuchi, T.; Furutake, N.; Onodera, T.; Kawahara, J.; Arai, K.; Kasama, Y.; Taiji, T.; Tohara, M.; Sekine, M.; and Hayashi, Y.: Plasma Co-polymerization Technology with Molecular-level Structure Tightening in "In-situ" SiOCH Stacks for 32 nm-node Cu Interconnects. IEEE Intl. Electron Device Meeting, Tech. (San Francisco, CA,USA), Digest 351 (2006)Google Scholar
  11. 11.
    Maex, K.; Baklanov, M. R.; Shamiryan, D.; and Lacopi, F.: Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793 (2003)CrossRefGoogle Scholar
  12. 12.
    Itoh, F.; Hijioka, K.; Takeuchi, T.; and Hayashi, Y.: Nanostructure Control of Porous Low-k Dielectric Films with High Water Resistance. Conference Proceedings AMC XX © 2005 Materials Research Society, 381 (2005)Google Scholar
  13. 13.
    Damayanti, M.; Widodo, J.; Sritharan, T.; Mhaisalkar, S. G.; Lu, W.; Gan, Z. H.; Zeng, K. Y.; and Hsia, L. C.: Erratum to “Adhesion study of low-k/Si system using 4-point bending and nanoscratch test” [Mater. Sci. Eng. B 121 (3) (2005) 193–198]. Materials Science and Engineering: B, 122(3), 249 (2005)CrossRefGoogle Scholar
  14. 14.
    Johnson, M.; Li, Z.; Wang, J.; and Yan Y.: Mechanical characterization of zeolite low dielectric constant thin films by nanoindentation. Thin Solid Films 515(6), 3164 (2007)CrossRefGoogle Scholar
  15. 15.
    Doux, C.; Aw, K. C.; Niewoudt, M.; and Gao W.: Analysis of HSG-7000 silsesquioxane-based low-k dielectric hot plate curing using Raman spectroscopy. Microelectron. Eng. 83(2), 387 (2006)CrossRefGoogle Scholar
  16. 16.
    Su, Y.-C. and Chang F.: Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 44(26), 7989 (2003)CrossRefGoogle Scholar
  17. 17.
    Omote, K.; Ito Y.; and Kawamura S.: Small angle x-ray scattering for measuring pore-size distributions in porous low- films. Appl. Phys. Lett. 82, 544 (2003)CrossRefGoogle Scholar
  18. 18.
    Wang, C. L.; Weber, M. H.; Lynn, K. G.; and Rodbell, K. P.: Several issues regarding the nanopore structure in low-dielectric-constant films detected by positron annihilation lifetime spectroscopy. Radiat. Phys. Chem. 68(3–4), 439 (2003)CrossRefGoogle Scholar
  19. 19.
    Yanazawa, H.; Fukuda, T.; Uchida, Y.; and Katou, I.: Water sorbability of low-k dielectrics measured by thermal desorption spectroscopy. Surf. Sci. 566–568(1), 566 (2004)CrossRefGoogle Scholar
  20. 20.
    Itoh, F.; Takeuchi, T.; and Hayashi, Y.: Improvement of Mechanical Properties of Porous SiOCH films by Post-cure Treatment. Conference Proceedings AMC XXI © 2006 Materials Research Society, 291 (2006)Google Scholar
  21. 21.
    Hijioka, K.; Ito, F.; Tagami, M.; Ohtake, H.; Harada, Y.; Takeuchi, T.; Saito, S.; and Hayashi, Y.: Mechanical Property Control of Low-k Dielectrics for Diminishing Chemical Mechanical Polishing (CMP)-Related Defects in Cu-Damascene Interconnects. Jpn. J. Appl. Phys., 43(4B), 1807 (2004)CrossRefGoogle Scholar
  22. 22.
    Tagami, M.; Ohtake, H.; Abe, M.; Ito, F.; Takeuchi, T.; Ohto, K.; Usami, T.; Suzuki, M.; Suzuki, T.; Sashida, N.; and Hayashi, Y.: Comprehensive process design for low-cost chip packaging with circuit-under-pad (CUP) structure in porous-SiOCH film. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, Proc. 12 (2005)Google Scholar
  23. 23.
    Burganos, V. N.: Monte Carlo simulation of gas diffusion in regular and randomized pore systems. J. Chem. Phys. 98, 2268 (1993)CrossRefGoogle Scholar
  24. 24.
    Miyajima, H.; Fujita, K.; Nakata, R.; Yoda, T.; and Hayasaka, N.: The application of simultaneous ebeam cure methods for 65 nm node Cu/low-k technology with hybrid (PAE/MSX) structure. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 222 (2004)Google Scholar
  25. 25.
    Furusawa, T.; Miura, N.; Matsumoto, M.; Goto, K.; Hashii, S.; Fujiwara, Y.; Yoshikawa, K.; Yonekura, K.; Asano, Y.; Ichiki, T.; Kawanabe, N.; Matsuzawa, T.; and Matsuura, M.: UV-hardened high-modulus CVD-ULK material for 45-nm node Cu/low-k interconnects with homogeneous dielectric structures. IEEE Intl. Interconnect Tech. Conf San Francisco, USA, 45 (2005)Google Scholar
  26. 26.
    Park, S. J.; Shin, J. J.; Min, S. K.; and Rhee, H. W.: Formation of nanoporous organosilicate films using cyclodextrins as a porogen. Curr. Appl. Phys. 6(4), 743 (2006)CrossRefGoogle Scholar
  27. 27.
    Chapelon, L. L.; Arnal, V.; Broekaart, M.; Gosset, L. G.; Vitiello, J.; and Torres, J.: Characterization and integration of a CVD porous SiOCH (k < 2.5) with enhanced mechanical properties for 65 nm CMOS interconnects and below. Microelectron. Eng. 76(1–4), 1(2004)CrossRefGoogle Scholar
  28. 28.
    Nakamura, T. and Nakashima, A.: Robust multilevel interconnects with a nano-clustering porous low-k (k<2.3). IEEE Intl. Interconnect Tech. Conf. San Francisco, USA 175 (2004)Google Scholar
  29. 29.
    Hayashi, Y.; Itoh, F.; Harada, Y.; Takeuchi, T.; Tada, M.; Tagami, M.; ohtake, H.; Hijioka, K.; Saito, S.; Onodera, T.; Hara, D.; and Tokudome, K.: Novel molecular-structure design for PECVD porous SiOCH films toward 45 nm node, ASICs with k=2.3. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 225 (2004)Google Scholar
  30. 30.
    Tada, M.; Ohtake, H.; Narihiro, M.; Ito, F.; Taiji, T.; Tohara, M.; Motoyama, K.; Kasama, Y.; Tagami, M.; Abe, M.; Takeuchi, T.; Arai, K.; Saito, S.; Furutake, N.; Onodera, T.; Kawahara, J.; Kinoshita, K.; Hata, N.; Kikkawa, T.; Tsuchiya, Y.; Fujii, K.; Oda, N.; Sekine, M.; and Hayashi, Y.: Feasibility study of a novel molecular-pore-stacking (MPS), SiOCH film in fully-scale-down, 45 nm-node Cu Damascene interconnects. Symp. VLSI Technol. (Kyoto, JPN), Digest 18, (2005)Google Scholar
  31. 31.
    Abe, M.; Tada, M.; Ohtake, H.; Furutake, N.; Narihiro, M.; Arai, K.; Takeuchi, T.; Saito, S.; Taiji, T.; Motoyama, K.; Kasama, Y.; Arita, K.; Ito, F.; Yamamoto, H.; Tagami, M.; Tonegawa, T.; Tsuchiya, Y.; Fujii, K.; Oda, N.; Sekine, M.; and Hayashi, Y.: A robust 45 nm-node, dual Damascene interconnects with high quality cu/barrier interface by a novel oxygen absorption process. IEEE Intl. Electron Device Meeting, Tech. Washington DC, USA, Digest 77 (2005)Google Scholar
  32. 32.
    Tagami, M.; Ohtake, H.; Tada, M.; Ueki, M.; Ito, F.; Taiji, T.; Kasama, Y.; Iwamoto, T.; Wakabayashi, H.; Fukai, T.; Arai, K.; Saito, S.; Yamamoto, H.; Abe, M.; Narihiro, M.; Furutake, N.; Onodera, T.; Takeuchi, T.; Tsuchiya, Y.; Oda, N.; Sekine, M.; Hane, M.; and Hayashi, Y.: High-Performance Cu-Interconnects with Novel Seamless Low-k SiOCH Stacks (SEALS) Featured by Compositional Modulation Process for 45 nm-Node ULSI Devices. Symp. VLSI Tech. Hawai, USA, 108 (2006)Google Scholar
  33. 33.
    Li, B.; Sullivan, T. D.; Lee, T. C.; and Badami, D.: Reliability challenges for copper interconnects. Microelectron. Reliab. 44(3), 365 (2004)CrossRefGoogle Scholar
  34. 34.
    Konishi, N.; Yamada, Y.; Noguchi, J.; Jimbo, T.; and Inoue, O.: Influence of CMP process on defects in SiOC films and TDDB reliability. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, Proc. 123 (2005)Google Scholar
  35. 35.
    Tada, M.; Ohtake, H.; Kawahara, J.; and Hayashi, Y.: Effects of material interfaces in Cu/low-/spl kappa/ Damascene interconnects on their performance and reliability. IEEE trans. On electron devices 51(11), 1867 (2004)CrossRefGoogle Scholar
  36. 36.
    McGahay, V.; Bonilla, G.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan-Scholl, M.; Demarest, J.; Dunn, D.; Engel, B.; Fitzsimmons, J.; Gill, J.; Grunow, S.; Herbst, B.; Hichri, H.; Ida, K.; Klymko, N.; Kiene, M.; Labelle, C.; Lee, T.; Liniger, E.; Liu, X. H.; Madan, A.; Malone, K.; Martin, J.; McLaughlin, P. V.; Minami, P.; Molis, S.; Muzzy, C.; Nguyen, S.; Patel, J. C.; Restaino, D.; Sakamoto, A.; Shaw, T. M.; Shimooka, Y.; Shobha, H.; Simonyi, E.; Widodo, J.; Grill, A.; Hannon, R.; Lane, M.; Nye, H.; Spooner, T.; Wisnieff, R.; and Ivers, T.: 65 nm Cu Integration and Interconnect Reliability in Low Stress K=2.75 SiCOH. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, Proc. 9 (2006)Google Scholar
  37. 37.
    Sankaran, S.; Arai, S.; Augur, R.; Beck, M.; Biery, G.; Bolom, T.; Bonilla, G.; Bravo, O.; Chanda, K.; Chae, M.; Chen, F.; Clevenger, L.; Cohen, S.; Cowley, A.; Davis, P.; Demarest, J.; Doyle, J.; Dimitrakopoulos, C.; Economikos, L.; Edelstein, D.; Farooq, M.; Filippi, R.; Fitzsimmons, J.; Fuller, N.; Gates, S. M.; Greco, S. E.; Grill, A.; Grunow, S.; Hannon, R.; Ida, K.; Jung, D.; Kaltalioglu, E.; Kelling, M.; Ko, T.; Kumar, K.; Labelle, C.; Landis, H.; Lane, M. W.; Landers, W.; Lee, M.; Li, W.; Liniger, E.; Liu, X.; Lloyd, J. R.; Liu, W.; Lustig, N.; Malone, K.; Marokkey, S.; Matusiewicz, G.; McLaughlin, P. S.; McLaughlin, P. V.; Mehta, S.; Melville, I.; Miyata, K.; Moon, B.; Nitta, S.; Nguyen, D.; Nicholson, L.; Nielsen, D.; Ong, P.; Patel, K.; Patel, V.; Park, W.; Pellerin, J.; Ponoth, S.; Petrarca, K.; Rath, D.; Restaino, D.; Rhee, S.; Ryan, E. T.; Shoba, H.; Simon, A.; Simonyi, E.; Shaw, T. M.; Spooner, T.; Standaert, T.; Sucharitaves, J.; Tian, C.; Wendt, H.; Werking, J.; Widodo, J.; Wiggins, L.; Wisnieff, R.; and Ivers, T.: A 45 nm CMOS node Cu/Low-k/ Ultra Low-k PECVD SiCOH (k=2.4) BEOL Technology. IEEE Intl. Electron Device Meeting, Tech. San Francisco, USA, Digest 355 (2006)Google Scholar
  38. 38.
    Nakao, S.; Ushio, J.; Ohno, T.; Hamada, T.; Kamigaki, Y.; Kato, M.; Yoneda, K.; Kondo, S.; and Kobayashi, N.: UV/EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Materials. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 66 (2006)Google Scholar
  39. 39.
    Kagawa, Y.; Enomoto, Y.; Shimayama, T.; Kameshima, T.; Okamoto, M.; Kawshima, H.; Yamada, A.; Hasegawa, T.; Akiyama, K.; Masuda, H.; Miyajima, M.; Shibata, H.; and Kadomura, S.: Robust 45-nm Node Cu/LJLK Interconnects using Effective Porogen Control. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, Proc. 207 (2006)Google Scholar
  40. 40.
    Yoneda, K.; Kato, M.; Nakao, S.; Matsuki, N.; Matsushita, K.; Ohara, N.; Kaneko, S.; Fukazawa, A.; Kamigaki, Y.; and Kobayashi, N.: Robust Low-k Diffusion Barrier (k=3.5) for 45-nm Node Low-k (k=2.3)/Cu Integration. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, Proc. 184 (2006)Google Scholar
  41. 41.
    Favennec, L.; Jousseaume, V.; Zenasni, A.; Bouchu, D.; and Passemard, G.: New low k a-SiC:H dielectric barrier for advanced interconnects. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 110 (2006)Google Scholar
  42. 42.
    Tajima, N.; Ohno, T.; Hamada, T.; Yoneda, K.; Kobayashi, N.; Shinriki, M.; Miyazawa, K.; Sakota, K.; Hasaka, S.; and Inoue, M.: Carbon-Rich SiOCH Films with Hydrocarbon Network Bonds for Low-k Dielectrics: First-Principles Investigation. IEEE Intl. Interconnect Tech. Conf. San Francisco, USA, 122 (2006)Google Scholar
  43. 43.
    Hayashi,Y.; Ohtake, H.; Kawahara, J.; Tada. M.; Saito, S.; Inoue, N.; Ito, F.; Tagami, M.; Ueki, M.; Furutake, N.; Takeuchi, T.; Yamamoto, H.; and Abe, M.: Comprehensive Chemistry Designs in Porous SiOCH Film Stacks and Plasma Etching Gases for Damageless Cu Interconnects in Advanced ULSI Devices. IEEE Trans. Semicond. Manuf. 21(3), 469 (2008)CrossRefGoogle Scholar
  44. 44.
    Inoue, N.; Furutake, N.; Ito, F.; Yamamoto, H.; Takeuchu, T.; and Hayashi, Y.: Impact of Barrier Metal Sputtering on Physical and Chemical Damages in Low-k SiOCH Films with Various Hydrocarbon Content. Jpn. J. Appl. Phys. 47(4), 2468 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.ULSI Fundamental Research Laboratory, Microelectronics Research LaboratoriesNEC Electronics CorporationSagamiharaJapan

Personalised recommendations