Damascene Concept and Process Steps



A Cu interconnect was first introduced to manufacturing in 1997 [1]. The Damascene process has been used for Cu interconnect formation because of the difficulty in Cu dry etching. There are two Damascene processes, as shown in Fig. 18.1: single and dual. In the single Damascene process, trenches and via contacts (Vias) are formed one step at a time. In the dual Damascene process, they are formed simultaneously. Fewer steps make the dual process favorable for manufacturing, so it has been extensively used. There are several fabrication methods, such as via first and trench first, in the dual Damascene process. These methods depend on the lithography mask, the materials of interlevel dielectrics, and other factors.


Atomic Layer Deposition Hard Mask Atomic Layer Deposition Process Lithography Mask Barrier Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Edelstein, E.; Heidenreich, J.; Goldblatt, R.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Motsiff, W.; Simon, A.; Dukovic, J.; Wachnik, R.; Rathore, H.; Schulz, R.; Su, L.; Luce, S.; and Slattery, J.: Full copper wiring in a sub-0.25 um CMOS ULSI technology. IEDM Tech. Dig. 773 (1997)Google Scholar
  2. 2.
    Steinhogel, W.; Schindler, G.; Steinlesberger, G.; and Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B, Condens. Matter 66, 0754141 (2002)Google Scholar
  3. 3.
    Economikos, L.; Wang, X.; Sakamoto, X.; Ong, P.; Naujok, M.; Knarr, R.; Chen, L.; Moon, Y.; Neo, S.; Salfelder, J.; Duboust, A.; Manens, A.; Lu, W.; Shrauti, S.; Liu, F.; Tsai, S.; and Swart, W.: Integrated electro-chemical mechanical planarization (Ecmp) for future generation device technology. Proc. IEEE IITC, 233 (2004)Google Scholar
  4. 4.
    Kajita, A.; Usui, T.; Yamada, M.; Ogawa, E.; Katata, T.; Sakata, A.; Miyajima, H.; Kojima, A.; Kanamura, R.; Ohoka, Y.; Kawashima, H.; Tabuchi, K.; Nagahata, K.; Kato, Y.; Hayashi, T.; Kadomura, S.; and Shibata, H.: Highly Reliable Cu/low-k Dual-Damascene Interconnect Technology with Hybrid (PAE/SiOC) Dielectrics for 65 nm-node High performance eDRAM. Proc. IEEE IITC, 9 (2003)Google Scholar
  5. 5.
    Misawa, K.; Sone, S.; Shin, H. J.; Inukai, K.; Sudo, Y.; Kondo, S.; Yoon, B. U.; Tokitoh, S.; Yoneda, K.; Yoshie, T.; Ohashi, N.; and Kobayashi, N.: High-Modulus Porous MSQ Films for CU/Low-k Integration (keff<2.7). Extended Abstracts of International Conference on Solid State Devices and Materials (SSDM). 256 (2003)Google Scholar
  6. 6.
    Ogawa, S.; Shimanuki, J.; Shimada, M.; Nasuno, T.; Inoue, Y.; and Mori, H.: 3-Dimensional TEM Stereo Observation Technology for Characterization of Pores in Low-k Film. Proc. IEEE IITC, 100 (2003)Google Scholar
  7. 7.
    Nakamura, T.; and Nakashima, A.: Robust Multilevel Interconnects with a Nano-clustering Porous Low-k (k<2.3). Proc. IEEE IITC, 175 (2004)Google Scholar
  8. 8.
    Tajima, N.; Hamada, T.; Ohno, T.; Yoneda, K.; Kobayashi, N.; Hasaka, T.; and Fnoue, M.: First-Principle Molecular Model of PECVD SiOCH Film for the Mechanical and Dielectric Property Investigation. Proc. IEEE IITC, 66 (2005)Google Scholar
  9. 9.
    Yoneda, K.; K.; Kato, M.; Kondo, S.; Kobayashi, N.; Matsuki, N.; Matsushita, K.; Ohara, N.; Fukazawa, A.; and Kimura, T.: Impacts of UV Cure for Reliable Porous PECVD SiOC Integration. Proc. IEEE IITC, 220 (2005)Google Scholar
  10. 10.
    Yoda, T.; Nakasaki, Y.; Hashimoto, H.; Fujita, K.; Miyajima, H.; Shimada, M.; Nakata, R.; Kaji, N.; and Hayasaka, N.: Structural Studies of High-Performance Low-k Dielectric Materials Improved by Electron-Beam Curing. Jpn. J. Appl. Phys. 44, 75 (2005)CrossRefGoogle Scholar
  11. 11.
    Jacobs, T.; Brennan, K.; Carpio, R.; Mosig, K.; Jing-Cheng Lin; Cox, H.; Mlynko, W.; Fourcher, J.; Bennett, J.; Wolf, J.; Augur, R.; and Gillespie, P.: Voiding in Ultra Porous Low-k Materials Proposed Mechanism, Detection and Possible Solutions. Proc. IEEE IITC, 236 (2002)Google Scholar
  12. 12.
    Kondo, S.; Nasuno, T.; Ogawa1, S.; Tokitou, S.; Yoon, B. U.; Namiki, A.; Sone, Y.; Misawa, K.; Yoshie, T.; Yoneda, K.; Shimada, M.; Sone, S.; Shin, H.J.; Ohashi, N.; Matsumoto, I.; and Kobayashi, N.: The Delamination Mechanism of Porous Low-k Film during the Cu CMP process. Extended Abstract SSDM, 250 (2003)Google Scholar
  13. 13.
    Higashi, K.; Yamaguchi, H.; Omoto, S.; Sakata, A.; Katata, T.; Matsunaga, N.; and Shibata, H.: Highly reliable PVD/ALD/PVD stacked metal structure for 45 nm-node copper dual damascene interconnects. Proc. IEEE IITC, 6 (2004)Google Scholar
  14. 14.
    Matsushita, A.; Ohashi, N.; Inukai, K.; Shin, H.J.; Sone, S.; Sudou, K.; Misawa, K.; Matsumoto, I.; and Kobayashi, N.: Low Damage Ashing using H2/He Plasma for Porous Ultra Low-k. Proc. IEEE IITC, 147 (2003)Google Scholar
  15. 15.
    Fox, R.; Hinsinger, O.; RichardE.; Sabouret, E.; Berger, T.; Goldberg, C.; Humbert, A.; Imbert, G.; Brun, P.; Ollier, E.; Maurice, C.; Guillermet, M.; Monget, C.; Plantier, V.; Bono, H.; Zaleski, M.; Mellier, M.; Jacquemin, J.-P.; Flake, J.; Sharma, B.G.; Broussous, L.; Farcy, A.; Arnal, V.; Gonella, R.; Maubert, S.; Girault, V.; Vannier, P.; Reber, D.; Schussler, A.; Mueller, J.; and Besling, W.: High performance k=2.5 ULK Backend Solution Using Improved TFHM Architecture, Extendible to the 45 nm Technology Node. IEDM Tech, Dig., 81 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Process Integration Technology, R&D, ASMTokyoJapan

Personalised recommendations