Advertisement

Electroless Deposition Approaching the Molecular Scale

  • A.M. Bittner
Chapter

Abstract

Electroless deposition (ELD) encompasses quite a range of chemical deposition processes at the solid/liquid interface. Here I focus exclusively on autocatalytic ELD of metals, i.e., the plated metal catalyzes its own deposition, and hence the process is continuous as long as sufficient amounts of reactants are provided [1–5]. Such a reaction requires a catalytic site to start; usually this is a noble metal nanoparticle, while for technical applications mixed metal particles are employed. Obviously, the size of the nanoparticle must be smaller than the desired metal structure. The theoretical limit for common electroless Cu plating baths is in the atomic range, and indeed clusters with two or four atoms may act as nuclei; the smallest electroless (EL) metal structures are in the range of 2 nm (corresponding to several hundred atoms) [6–7].

Keywords

Tobacco Mosaic Virus Electroless Deposition Small Metal Particle Nernst Potential Noble Metal Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Paunovic, M. and Schlesinger, M.: Fundamentals of electrochemical deposition. Wiley Interscience: New York (1998)Google Scholar
  2. 2.
    Mallory, G. O. and Hajdu, J. B.: Electroless Plating: Fundamentals and Applications. American Electroplaters and Surface Finishers Society: Orlando (1990)Google Scholar
  3. 3.
    O'Sullivan, E. J.: Fundamental and Practical Aspects of the Electroless Deposition Reaction. In Advances in Electrochemical Science and Engineering, Alkire, R. C.; Kolb, D. M., Eds. Wiley-VCH: Weinheim 7, 225 (2002)Google Scholar
  4. 4.
    Djokic, S. S.: Electroless Deposition of Metals and Alloys. In Modern Aspects of Electrochemistry, Conway, B. E.; White, R. E., Eds. Kluwer: New York, 35, 51 (2002)Google Scholar
  5. 5.
    Shacham-Diamand, Y.; Inberg, A.; Sverdlov, Y.; Bogush, V.; Croitoru, N.; Moscovich, H.; and Freeman, A.: Electroless processes for micro- and nanoelectronics. Electrochimica Acta 48(20–22), 2987 (2003)CrossRefGoogle Scholar
  6. 6.
    Mertig, M.; Kirsch, R.; Pompe, W.; and Engelhardt, H.: nanocluster array on S layer. Eur. Phys. J. D 9, 45 (1999)CrossRefGoogle Scholar
  7. 7.
    Knez, M.; Sumser, M.; Bittner, A. M.; Wege, C.; Jeske, H.; Martin, T. P.; and Kern, K.: Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic Virus. Adv. Funct. Mater. 14, 116 (2004)CrossRefGoogle Scholar
  8. 8.
    Grummt, U.-W.; Geissler, M.; and Schmitz-Huebsch, T.: Chemical deposition of silver nanoclusters on self-assembled organic monolayers. A strategy to contact individual molecules. Chem. Phys. Lett. 263, 581 (1996)CrossRefGoogle Scholar
  9. 9.
    Andricacos, P. C.: Copper on-chip interconnections. The Electrochemical Society – Interface, Spring, 32 (1999)Google Scholar
  10. 10.
    Vaskelis, A.; Stalnionis, G.; and Jusys, Z.: Cyclic voltammetry and quartz crystal microgravimetry study of autocatalytic copper(II) reduction by cobalt(II) in ethylenediamine solutions. J. Electroanal. Chem. 465, 142 (1999)CrossRefGoogle Scholar
  11. 11.
    Jagannathan, R. and Krishnan, M.: Electroless plating of copper at a low pH level. IBM. J. Res. Develop. 37, 117 (1993)CrossRefGoogle Scholar
  12. 12.
    Van den Meerakker, J. E. A. M.: On the mechanism of electroless plating. II. One mechanism for different reductants. J. Appl. Electrochem. 11, 395 (1981)CrossRefGoogle Scholar
  13. 13.
    Wiese, H. and Weil, K. G.: Separation of partial processes at mixed electrodes. J. Electroanal. Chem. 228, 347 (1987)CrossRefGoogle Scholar
  14. 14.
    Inberg, A.; Zhu, L.; Hirschberg, G.; Gladkikh, A.; Croitoru, N.; Shacham-Diamand, Y.; and Gileadi, E.: Characterization of the initial growth stages of electroless Ag(W) films deposited on Si(100). J. Electrochem. Soc. 148, C784 (2001)CrossRefGoogle Scholar
  15. 15.
    Pohl, K. and Stierhof, Y.-D.: Action of gold chloride (“Gold Toning”) on silver-enhanced 1 nm gold markers. Microscopy Res. Technique 42, 59 (1998)CrossRefGoogle Scholar
  16. 16.
    Baschong, W. and Stierhof, Y.-D.: Preparation, use, and enlargement of ultrasmall gold particles in immunoelectron microscopy. Microscopy Res. Technique 42, 66 (1998)CrossRefGoogle Scholar
  17. 17.
    Ciacchi, L.; Pompe, W.; and De Vita, A.: Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study. J. Am. Chem. Soc. 123, 7371 (2001)CrossRefGoogle Scholar
  18. 18.
    Van der Putten, A. M. T. and de Bakker, J. W. G.: Geometrical effects in the electroless metallization of fine metal patterns. J. Electrochem. Soc. 140, 2221 (1993)CrossRefGoogle Scholar
  19. 19.
    Kind, H.; Bittner, A. M.; Cavalleri, O.; Kern, K.; and Greber, T.: Electroless deposition of metal nanoislands on aminothiolate-functionalized Au(111) electrodes. J. Phys. Chem. B 102(39), 7582 (1998)CrossRefGoogle Scholar
  20. 20.
    Bittner, A. M.: Clusters on soft matter surfaces. Sur. Sci. Rep. 61, 383–428 (2006)CrossRefGoogle Scholar
  21. 21.
    Brandow, S. L.; Chen, M.-S.; Wang, T.; Dulcey, C. S.; Calvert, J. M.; Bohland, J. F.; Calabrese, G. S.; and Dressick, W. J.: Size-controlled colloidal Pd(II) catalysts for electroless Ni deposition in nanolithography applications. J. Electrochem. Soc. 144, 3425 (1997)CrossRefGoogle Scholar
  22. 22.
    Dressick, W.; Kondracki, L.; Chen, M.; Brandow, S.; Matijevic, E.; and Calvert, J.: Characterization of a colloidal Pd(II)-based catalyst dispersion for electroless metal deposition. Coll. Surf. A 108, 101 (1996)CrossRefGoogle Scholar
  23. 23.
    Bittner, A. M.: Biomolecular rods and tubes in nanotechnology. Naturwissenschaften 92, 51 (2005)CrossRefGoogle Scholar
  24. 24.
    Huczko, A.: Template-based synthesis of nanomaterials. Appl. Phys. A-Mater. Sci. Process. 70(4), 365 (2000)Google Scholar
  25. 25.
    Chen, M. S.; Brandow, S. L.; and Dressick, W. J.: Additive channel-constrained metallization of high-resolution features. Thin Solid Films 379(1–2), 203 (2000)CrossRefGoogle Scholar
  26. 26.
    Li, J.; Moskovits, M.; and Haslett, T. L.: Nanoscale electroless metal deposition in aligned carbon nanotubes. Chem. Mater. 10(7), 1963 (1998)CrossRefGoogle Scholar
  27. 27.
    Ang, L. M.; Hor, T. S. A.; Xu, G. Q.; Tung, C. H.; Zhao, S. P.; and Wang, J. L. S.: Decoration of activated carbon nanotubes with copper and nickel. Carbon 38, 363–372 (2000)CrossRefGoogle Scholar
  28. 28.
    Fink, D.; Petrov, A. V.; Rao, V.; Wilhelm, M.; Demyanov, S.; Szimkowiak, P.; Behar, M.; Alegaonkar, P. S.; and Chadderton, L. T.: Production parameters for the formation of metallic nanotubules in etched tracks. Radiat. Meas. 15, 751 (2003)CrossRefGoogle Scholar
  29. 29.
    Kordas, K.; Toth, G.; Levoska, J.; Huuhtanen, M.; Keiski, R.; Härkönen, M.; George, T. F.; and Vähäkangas, J.: Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology 17, 1459 (2006)CrossRefGoogle Scholar
  30. 30.
    Wirtz, M.; Yu, S. F.; and Martin, C. R.: Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 127(7), 871 (2002)CrossRefGoogle Scholar
  31. 31.
    Ah, C. S.; Yun, Y. J.; Lee, J. S.; Park, H. J.; Ha, D. H.; and Yun, W. S.: Fabrication of integrated nanogap electrodes by surface-catalyzed chemical deposition. Appl. Phys. Lett. 88, 1331161 (2006)CrossRefGoogle Scholar
  32. 32.
    He, H.; BoussaadS.; Xu, B.; Li, C.; and Tao, N.: Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps. J. Electroanal. Chem. 522, 167 (2002)CrossRefGoogle Scholar
  33. 33.
    Niemeyer, C. M.: Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128 (2001)CrossRefGoogle Scholar
  34. 34.
    Powell, R. D.; Halsey, C. M. R.; Liu, W.; Joshi, V. N.; and HainfeldJ. F.: Giant platinum clusters: 2-nm covalent metal cluster labels. J. Struct. Biol. 127, 177 (1999)CrossRefGoogle Scholar
  35. 35.
    Taton, T. A.; Mirkin, C. A.; and Letsinger, R. L.: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757 (2000)CrossRefGoogle Scholar
  36. 36.
    Möller, R.; Powell, R. D.; HainfeldJ. F.; and Fritzsche, W.: Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA Chips. Nano Lett. 5, 1475 (2005)CrossRefGoogle Scholar
  37. 37.
    Keren, K.; Krueger, M.; GiladR.; Ben-Yoseph, G.; Sivan, U.; and Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 (2002)CrossRefGoogle Scholar
  38. 38.
    Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; and LaBean, T. H.: Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693 (2005)Google Scholar
  39. 39.
    Price, R. R.; Dressick, W. J.; and Singh, A.: Fabrication of nanoscale metallic spirals using phospholipid microtubule organizational templates. J. Am. Chem. Soc. 125, 11259 (2003)CrossRefGoogle Scholar
  40. 40.
    Banerjee, I. A.; Yu, L.; and Matsui, H.: Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl. Acad. Sci. USA 100, 14678 (2003)CrossRefGoogle Scholar
  41. 41.
    Behrens, S.; Wu, J.; Habicht, W.; and Unger, E.: Silver Nanoparticle and Nanowire Formation by Microtubule Templates. Chem. Mater. 16, 3085 (2004)CrossRefGoogle Scholar
  42. 42.
    Patolsky, F.; Weizmann, Y.; and Willner, I.: Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 15, 692 (2004)CrossRefGoogle Scholar
  43. 43.
    Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X. M.; Jaeger, H.; and Lindquist, S. L.: Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. 100(8), 4527 (2003)CrossRefGoogle Scholar
  44. 44.
    Huang, Y.; Chiang, C.-Y.; Lee, S. K.; Gao, Y.; Hu, E. L.; DeYoreo, J.; and Belcher, A. M.: Programmable assembly. Nano Lett. 5, 1429 (2005)CrossRefGoogle Scholar
  45. 45.
    Reches, M. and Gazit, E.: Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625 (2003)CrossRefGoogle Scholar
  46. 46.
    Balci, S.; Bittner, A. M.; Hahn, K.; Scheu, C.; Knez, M.; Kadri, A.; Wege, C.; Jeske, H.; and Kern, K.: Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim. Acta 51/28, 6251 (2006)CrossRefGoogle Scholar
  47. 47.
    Knez, M.; Bittner, A. M.; Boes, F.; Wege, C.; Jeske, H.; Maiß, E.; and Kern, K.: Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett. 3, 1079 (2003)CrossRefGoogle Scholar
  48. 48.
    Falkner, J. C.; Turner, M. E.; Bosworth, J. K.; Trentler, T. J.; Johnson, J. E.; Lin, T.; and Colvin, V. L.: Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 127, 5274 (2005)CrossRefGoogle Scholar
  49. 49.
    Weizmann, Y.; Patolsky, F.; Popov, I.; and Willner, I.: Telomerase-generated templates for the growing of metal nanowires. Nano Lett. 4, 787 (2004)CrossRefGoogle Scholar
  50. 50.
    Matsui, H.; Pan, S.; Gologan, B.; and Jonas, S. H.: Bolaamphiphile nanotube-templated metallized wires. J. Phys. Chem. B 104, 9576 (2000)CrossRefGoogle Scholar
  51. 51.
    Djalali, R.; Chen, Y.-F.; and Matsui, H.: Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J. Am. Chem. Soc. 125, 5873 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Group leader “Self-Assembly” Asociacion CIC nanoGUNE Tolosa HiribideaDonostia – San SebastianSpain

Personalised recommendations