Advertisement

Atomic Layer Deposition (ALD) Processes for ULSI Manufacturing

  • Schubert S. Chu
Chapter

Abstract

Atomic layer deposition (ALD) is a technique where precursors are introduced alternatively, and a monolayer (or fraction thereof) is deposited on the surface at a time [1–4]. The sequential introduction of all precursors, separated by purge steps, completes an ALD cycle. Figure 14.1 illustrates the steps that comprise an ALD cycle.

Keywords

Atomic Layer Deposition Physical Vapor Deposition Nucleation Layer Technology Node Equivalent Oxide Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Suntola, T.: Atomic Layer Epitaxy. 16th International Conference on Solid State Devices and Materials, 647 (1984)Google Scholar
  2. 2.
    Suntola, T. and Antson, J.: US patent No. 4058430.Google Scholar
  3. 3.
    Ritala M. and Leskelä, M.: In: Handbook of Thin Film Materials, Volume 1, Deposition and Processing of Thin Films, Nalwa, M. S. (Eds.), Academic Press, San Diego, 103 (2001)Google Scholar
  4. 4.
    Suntola, T.: Atomic layer epitaxy. Thin Solid Films, 216, 84 (1992)CrossRefGoogle Scholar
  5. 5.
    Leskelä M.; and Nünistö, L.: In Atomic Layer Epitaxy. Suntola, T.; and Simpson, M. (Eds.), Blackie, Glasgow (1990)Google Scholar
  6. 6.
    George, S. M.; Ott, A. W.; and Klaus, J. W.: Surface chemistry for atomic layer growth, J. Phys. Chem., 100(31), 13121 (1996).CrossRefGoogle Scholar
  7. 7.
    Matero, R.; Rahtu, A.; Ritala, M.; Leskelä, M.; and Sajavaara, T.: Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin Solid Films 368(1), 1 (2000)CrossRefGoogle Scholar
  8. 8.
    International Technology Roadmap for Semiconductors 2004 Update, Front End ProcessGoogle Scholar
  9. 9.
    Nouri, F.; Kher, S.; Narwankar, P.; Sharangpani, R.; Muthukrishnan, S.; Kraus, P.; Ahmed K.; Olsen, C.; Chua, T. C.; Cruse, J.; Hung, S.; Bae, S. H.; Kang, A.; Higashi, G.; and Miner, G.: Trends in gate stack engineering, Proceedings of IEEE International Conference on Integrated Circuit Design and Technology, 275 (2004)Google Scholar
  10. 10.
    Wilk, G. D.; Wallance, R. M.; and Anthony, J. M.: High-k gate dielectrics: current status and materials properties considerations. J. App. Phys. 89(10), 5243 (2001)CrossRefGoogle Scholar
  11. 11.
    Delabie, A.; Puurunen, R. L.; Brijs, B.; Caymax, M.; Conard,T.; Onsia, B.; RichardO.; Vandervorst,; Zhao, W. C.; Heyns, M. M.; and Meuris, M.: Atomic layer deposition of hafnium oxide on germanium substrates. J. App. Phys. 97(6), 064104 , 1 (2005)Google Scholar
  12. 12.
    Kim, H.; McIntyre, P. C.; and Saraswat, K. C.: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. App. Phys. Lett. 82(1), 106 (2003)CrossRefGoogle Scholar
  13. 13.
    Deshpande, A.; Inman, R.; Jursich, G.; and Takoudis, C.: Atomic layer deposition and characterization of hafnium oxide grown on silicon from tetrakis(diethylamino)hafnium and wafer vapor. J. Vac. Sci. technol. A. 22(5), 2035 (2004)CrossRefGoogle Scholar
  14. 14.
    Fillot, F.; Morel, T.; Minoret, S.; Matko, I.; Maitrejean, S.; Guillaumot, B.; Chenevier, B.; and Billon, T.: Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH3. Microelectron. Eng. 82, 248 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhong, H.; Hong, S. N.; Suh, Y. S.; Lazar, H.; Heuss, G.; and Misra, V.: Properties of Ru-Ta alloys as gate electrodes for NMOS and PMOS silicon devices. International Electron Devices Meeting, 467 (2001)Google Scholar
  16. 16.
    Ritala, M.; Leskelä, M.; Rauhala, E.; and Haussalo, P.: Atomic layer epitaxy growth of TiN thin films. J. Electrochem. Soc. 142(8), 2731 (1995)CrossRefGoogle Scholar
  17. 17.
    Min, J. S.; Park, H. S.; Koh, W.; and Kang, S. W.: Chemical vapor deposition of Ti-Si-N films with alternating source supply. Mater. Res. Soc. Symp. Proc. 564, 207 (1999)Google Scholar
  18. 18.
    Ott, A. W.; Klaus, J. W.; Johnson, J. M.; and George, S. M.: Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry. Thin Solid Films 292(1), 135 (1997)CrossRefGoogle Scholar
  19. 19.
    Kim, H. K.; Kim, J. Y.; Park, J. Y.; Kim, Y.; Kim, Y. D.; Jeon, H.; Kim, and W. M.: Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3. J. Korean Physical Soc. 41(5), 739 (2002)Google Scholar
  20. 20.
    Ohba, T.: Chemical-vapor-deposited tungsten for vertical wiring. MRS Bull. 20(11), 46 (1995)Google Scholar
  21. 21.
    Klaus, J. W.; Ferro, S. J.; and George, S. M.: Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction. Thin Solid Films 360(1), 145 (2000)CrossRefGoogle Scholar
  22. 22.
    Yang, M.; Chung, H.; Yoon, A.; Fang, H.; Zhang, A.; Knepfler, C.; Jackson, M.; Byun, J. S.; Mak, A.; Eizenberg, M.; Xi, M.; Kori, M.; and Sinha, A.: Atomic layer deposition of tungsten film from WF6/B2H6: Nucleation layer for advanced semiconductor devices, Advanced Metallization Conference, 655 (2001)Google Scholar
  23. 23.
    Rossnagel, S. M.; and Kuan, T. S.: Alteration of Cu conductivity in the size effect regime. J. Vac. Sci. Tech. B 22(1), 240 (2004)CrossRefGoogle Scholar
  24. 24.
    International Technology Roadmap for Semiconductors 2004 Update, Interconnect.Google Scholar
  25. 25.
    Svedberg, L.; Prindle, C.; Brennan, B.; Lee, J.J.; Guenther, T.; Ryan, T.; Junker, K.; Grove, N.; Jiang, J.; Denning, D.; Shahvandi, R.; and Yu, K.: Electrical and physical characterization of atomic layer deposited thin films for copper barrier applications, Advanced Metallization Conference, 701 (2002)Google Scholar
  26. 26.
    Chung, H.; Chang, M.; Chu, S.; Kumar, N.; Goto, K.; Maity, N.; Sankaranarayanan, S.; Okamura, H.; Ohtsuka, N.; and Ogawa, S.: An ultra-thin ALD TaN barrier for high performance Cu interconnects. IEEE Intl. Symp. on Semi. Manuf. , 454 (2003)Google Scholar
  27. 27.
    Michaelson, L. M.; Thrasher, S. R.; Besling, W. F. A.; Rasco, M. ; Acosta, E.; Jiang, Z. Xi.; Kim, K.; Kirksey, S. H.; Rose, S. H.; and Vanypre, T.: ALD TaN reliability improvement in dual-Damascene structures. Advanced Metallization Conference, 699 (2004).Google Scholar
  28. 28.
    Martensson, P.; and Carlsson, J. O.: Atomic layer epitaxy of copper. Growth and selectivity in the Cu(II)-2,2,6,6-tetramethyl-3,5-heptanedionate/H2 process. J. Electrochem. Soc. 145(8), 2926 (1998)CrossRefGoogle Scholar
  29. 29.
    Martensson, P. and Carlsson, J. O.: Atomic layer epitaxy of copper on tantalum. Chem. Vap. Dep. 3(1), 45 (1997)CrossRefGoogle Scholar
  30. 30.
    Huo, J.; Solanki, R.; and McAndrew, J.: Characteristics of copper films produced via atomic layer deposition. J. Mat. Res. 17(9), 2394 (2002)CrossRefGoogle Scholar
  31. 31.
    Marcadal, C.; RichardE.; Torres, J.; Palleau, J.; and Madar, R.: CVD process for copper interconnection. Microelec. Eng. 37, 97 (1997)CrossRefGoogle Scholar
  32. 32.
    Kwon, O. K.; Kim, J. H.; Park, H. S.; and Kang, S. W.: Atomic layer deposition of ruthenium thin films for copper glue layer. J. Electrochem. Soc. 151(2), 109 (2004)CrossRefGoogle Scholar
  33. 33.
    Sun, Z. W.; He, R.; and Dukovic, J. O.: Direct plating of Cu on Ru: Nucleation kinetics and gapfill chemistry. Advanced Metallization Conference, 531 (2004)Google Scholar
  34. 34.
    Aaltonen, T.; Alen, P.; Ritala, M.; and Leskela, M.: Ruthenium thin films grown by atomic layer deposition. Adv. Mater. 15(1), 45–49 (2003)CrossRefGoogle Scholar
  35. 35.
    Aaltonen, T.; Ritala, M.; Arstila, K.; Keinonen, J.; and Leskela, M.: Atomic layer deposition of ruthenium thin films from Ru(thd)3 and oxygen. Chem. Vap. Dep. 10(4), 215 (2004)CrossRefGoogle Scholar
  36. 36.
    Kwon, O. K.; Kim, J. H; Park, H. S.; and Kang, S. W.: Atomic layer deposition of ruthenium thin films for copper glue layer. J. Electrochem. Soc. 151(2), 109 (2004)CrossRefGoogle Scholar
  37. 37.
    Kwon, O. K.; Kwon, S. H.; Park, H. S.; and Kang, S. W.: Plasma-enhanced atomic layer deposition of ruthenium thin films. Electrochem. Solid State Lett. 7(4), 46 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Global Product Manager at Applied Materials Applied Materials Inc.Santa ClaraUSA

Personalised recommendations