Advertisement

Electrochemical Processes for ULSI Interconnects

  • Tetsuya Osaka
  • Madoka Hasegawa
  • Masahiro Yoshino
  • Noriyuki Yamachika
Chapter

Abstract

Copper is widely used as interconnecting material in ultra-large-scale integration (ULSI) circuits (Fig. 13.1). Fabrication of copper interconnection has been achieved by “Damascene process” [1], which is an electrodeposition process combined with chemical–mechanical polishing (CMP) (Fig. 13.1) [2]. Damascene process led to a remarkable change in the industry. Most manufacturers have now converted to this electrodeposited copper interconnect technology. Before the introduction of copper to interconnects, aluminum and aluminum–copper alloy were used as the interconnecting materials for many years. Aluminum interconnect layers are easily fabricated by subtractive etching process. In process, the interconnect layers are deposited by physical vapor deposition, followed by reactive ion etching (RIE). Aluminum is preferable as interconnects because this material does not diffuse into SiO2 substrate and the layers adhere well to the substrate. However, resistivity of aluminum is relatively high (2.65 μΩ cm), and the layers suffer from the disadvantage of its poor electromigration resistance.

Keywords

Atomic Layer Deposition Seed Layer Copper Deposition Electroless Deposition Copper Electrodeposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 (1998)CrossRefGoogle Scholar
  2. 2.
    Andricacos, P. C.: Copper on-chip interconnections. The Electrochem. Soc. Interface 8, 32 (1999)Google Scholar
  3. 3.
    Ismail, Y. I.; Friedman, E. G.; and Neves, J. L.: Exploiting the on-chip inductance in high-speed clock distribution networks. IEEE Trans Very Large Scale Integr (VLSI) Syst. 9, 963 (2001)CrossRefGoogle Scholar
  4. 4.
    Deutsch, A.; Kopcsay, G. V.; Coteus, P. W.; Surovic, C. W.; Dahlen, P. E.; Heckmann, D. L.; and Duan, D. W.: Frequency-dependent losses on high-performance interconnections. IEEE Trans. Electromagn. Compat. 43, 446 (2001).CrossRefGoogle Scholar
  5. 5.
    Ismail, Y. I.; Friedman, E. G.; and Neves, J. L.: Repeater insertion in tree structured inductive interconnect. IEEE Trans. Circuits Syst. II-Analog Digital Signal Process 48, 471 (2001)CrossRefGoogle Scholar
  6. 6.
    Deutsch, A.; Coteus, P. W.; Kopcsay, G. V.; Smith, H. H.; Surovic, C. W.; Krauter, B. L.; Edelstein, D. C.; and Restle, P. J.: On-chip wiring design challenges for gigahertz operation. Proc. IEEE. 89, 529 (2001)CrossRefGoogle Scholar
  7. 7.
    Ismail, Y. I.; and Friedman, E. G.: Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans Very Large Scale Integr (VLSI) Syst. 8, 195 (2000)CrossRefGoogle Scholar
  8. 8.
    Ismail, Y. I.; Friedman, E. G.; and Neves, J. L.: Equivalent Elmore delay for RLC trees. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 19, 83 (2000)CrossRefGoogle Scholar
  9. 9.
    Sakurai, T.: Approximation of wiring delay in MOSFET LSI. IEEE J. Solid-State Circuit. 18, 418 (1983)CrossRefGoogle Scholar
  10. 10.
    Edelstein, D. C.; Saihalasz, G. A.; and Mii, Y. J.: VLSI on-chip interconnection performance simulations and measurements. IBM J. Res. Dev. 39, 383 (1995)CrossRefGoogle Scholar
  11. 11.
    Edelstein, D.; Heidenreich, J.; Goldblatt, R.; Cote, W.; Uzoh, C.; Lustig, N.; Roper, P.; McDevitt, T.; Motsiff, W.; Simon, A.; Dukovic, J.; Wachnik, R.; Rathore, H.; Schulz, R.; Su, L.; Luce, S.; and Slattery, J.: Full copper wiring in a sub-0.25 μm CMOS ULSI technology. In Technical Digest, IEEE International Electron Devices Meeting 773 (1997)Google Scholar
  12. 12.
    Venkatesan, S.; Gelatos, A. V.; Hisra, S.; Smith, B.; Islam, R.; Cope, J.; Wilson, B.; Tuttle, D.; Cardwell, R.; Anderson, S.; Angyal, M.; Bajaj, R.; Capasso, C.; Crabtree, P.; Das, S.; Farkas, J.; Filipiak, S.; Fiordalice, B.; Freeman, M.; Gilbert, P. V.; Herrick, M.; Jain, A.; Kawasaki, H.; King, C.; Klein, J.; Lii, T.; ReidK.; Saaranen, T.; Simpson, C.; Sparks, T.; Tsui, P.; Venkatraman, R.; Watts, D.; Weitzman, E. J.; Woodruff, R.; Yang, I.; Bhat, N.; Hamilton, G.; and Yu, Y.: A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization. In Technological Digest, IEEE International Electron Devices Meeting 769 (1997)Google Scholar
  13. 13.
    Rosenberg, R.; Edelstein, D. C.; Hu, C. K.; and Rodbell, K. P.: Copper metallization for high performance silicone technology. Annu. Rev. Mat. Sci. 30, 229 (2000)CrossRefGoogle Scholar
  14. 14.
    Lee, S. K.; Chun, S. S.; Hwang, C. Y.; and Lee, W. J.: Reactive ion etching mechanism of copper film in chlorine-based electron cyclotron resonance plasma. Jpn. J. Appl. Phys. PART 1. 36, 50 (1997)CrossRefGoogle Scholar
  15. 15.
    HowardB. J. and Steinbruchel, C.: Reactive ion etching of copper in SiCl4-based plasmas. Appl. Phys. Lett. 59, 914 (1991)CrossRefGoogle Scholar
  16. 16.
    Ohno, K.; Sato, M.; and Arita, Y.: Reactive ion etching of copper films in SiCl4 and N2 mixture. Jpn. J. Appl. Phys. PART 2. 28, L, 1070 (1989)CrossRefGoogle Scholar
  17. 17.
    Schwartz, G. C. and Schaible, P. M.: Reactive ion etching of copper films. J. Electrochem. Soc. 130, 1777 (1983)CrossRefGoogle Scholar
  18. 18.
    Krzewska, S.; Impedance investigation of the mechanism of copper electrodeposition from acidic perchlorate electrolyte. Electrochim. Acta. 42, 3531 (1997)CrossRefGoogle Scholar
  19. 19.
    Yoon, S.; Schwartz, M.; and Nobe, K.: Rotating ring-disk electrode studies of copper electrodeposition: effect of chloride ions and organic additives. Plat. Surf. Finish. 81, 65 (1994)Google Scholar
  20. 20.
    Jardy, A.; Lasallemolin, A. L.; Keddam, M.; and Takenouti, H.: Copper dissolution in acidic sulphate media studied by QCM and rrde under ac signal. Electrochim. Acta. 37, 2195 (1992)CrossRefGoogle Scholar
  21. 21.
    Yokoi, M.; Konishi, S.; and Hayashi, T.: Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku. 52, 218 (1984)Google Scholar
  22. 22.
    Yokoi, M.; Konishi, S.; and Hayashi, T.: Mechanism of the electrodeposition and dissolution of copper in an acid copper sulfate bath I. The behavior of intermediate Cu+. Denki Kagaku. 51, 310 (1984)Google Scholar
  23. 23.
    ReidJ.; Copper electrodeposition: principles and recent progress. Jpn. J. Appl. Phys. PART 1. 40, 2650 (2001)CrossRefGoogle Scholar
  24. 24.
    Takahashi, K. M.: Electroplating copper onto resistive barrier films. J. Electrochem. Soc. 147, 1414 (2000)CrossRefGoogle Scholar
  25. 25.
    Broadbent, E. K.; McInerney, E. J.; Gochberg, L. A.; and Jackson, R. L.: Experimental and analytical study of seed layer resistance for copper Damascene electroplating. J. Vac. Sci. Tech. B. 17, 2584 (1999)CrossRefGoogle Scholar
  26. 26.
    Soukane, S; Sen, S.; and Cale, T. S.: Feature superfilling in copper electrochemical deposition. J. Electrochem. Soc. 149:C, 74 (2002)CrossRefGoogle Scholar
  27. 27.
    Kelly, J. J. and West, A. C.: Leveling of 200 nm features by organic additives. Electrochem. Solid State Lett. 2, 561 (1999)CrossRefGoogle Scholar
  28. 28.
    Mirkova, L.; Rashkov, S.; and Nanev, C.: The leveling mechanism during bright acid copper plating. Surf. Tech. 15, 181 (1982)CrossRefGoogle Scholar
  29. 29.
    Hasegawa, M.; Negishi, Y.; Nakanishi, T.; and Osaka, T.: Effects of additives on copper electrodeposition in submicrometer trenches. J. Electrochem. Soc. 152, C221 (2005)CrossRefGoogle Scholar
  30. 30.
    Kelly, J. J.; and West, A. C.: Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study. J Electrochem Soc. 145, 3472 (1998)Google Scholar
  31. 31.
    Kelly, J. J. and West, A. C.: Copper deposition in the presence of polyethylene glycol II. Electrochemical impedance spectroscopy. J. Electrochem. Soc. 145, 3477 (1998)CrossRefGoogle Scholar
  32. 32.
    Stoychev, D. and Tsvetanov, C.: Behaviour of poly (ethylene glycol) during electrodeposition of bright copper coatings in sulphuric acid electrolytes. J. Appl. Electrochem. 26, 741 (1996)CrossRefGoogle Scholar
  33. 33.
    Moffat, T. P.; Wheeler, D.; and Josell, D.: Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: influence of SPS. J. Electrochem. Soc. 151, C262 (2004)Google Scholar
  34. 34.
    Healy, J. P.; Pletcher, D.; and Goodenough, M.: The chemistry of the additives in an acid copper electroplating bath Part I. Polyethylene glycol and chloride ion. J. Electroanal. Chem. 338, 155 (1992)CrossRefGoogle Scholar
  35. 35.
    Kang, M.; Gross, M. E.; and Gewirth, A. A.: Atomic force microscopy examination of Cu electrodeposition in trenches. J. Electrochem. Soc. 150, C292 (2003)CrossRefGoogle Scholar
  36. 36.
    Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; and Josell, D.: Superconformal film growth: mechanism and quantification. IBM J. Res. Dev. 49, 19 (2005)CrossRefGoogle Scholar
  37. 37.
    Vereecken, P. M.; BinsteadR. A.; Deligianni, H.; and Andricacos, P. C.: The chemistry of additives in Damascene copper plating. IBM J. Res. Dev. 49, 3 (2005)CrossRefGoogle Scholar
  38. 38.
    Moffat, T. P.; Bonevich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; StaffordG. R.; and Josell, D.: Superconformal electrodeposition of copper in 500–90 nm features. J. Electrochem. Soc. 147, 4524 (2000)CrossRefGoogle Scholar
  39. 39.
    Miura, S.; Oyamada, F.; Takada, Y.; and Honma, H.: ULSI wiring formation by copper electroplating in the presence of additives. Electrochemistry 69, 773 (2001)Google Scholar
  40. 40.
    Taephaisitphongse, P.; Cao, Y.; and West, A. C.: Electrochemical and fill studies of a multicomponent additive package for copper deposition. J. Electrochem. Soc. 148, C492(2001)CrossRefGoogle Scholar
  41. 41.
    Dukovic, J. O.: Feature-scale simulation of resist-patterned electrodeposition. IBM J. Res. Dev. 37, 125 (1993)CrossRefGoogle Scholar
  42. 42.
    West, A. C.: Theory of filling of high-aspect ratio trenches and vias in presence of additives. J. Electrochem. Soc. 147, 227 (2000)CrossRefGoogle Scholar
  43. 43.
    Takahashi, K. M. and Gross, M. E.: Transport phenomena that control electroplated copper filling of submicron vias and trenches. J. Electrochem. Soc. 146, 4499 (1999)CrossRefGoogle Scholar
  44. 44.
    Madore, C.; Agarwal, P.; and Landolt, D.: Blocking inhibitors in cathodic leveling III. Electrochemical impedance spectroscopy study. J. Electrochem. Soc. 145, 1561 (1998)CrossRefGoogle Scholar
  45. 45.
    Madore, C.; Matlosz, M.; and Landolt, D.: Blocking inhibitors in cathodic leveling I. Theoretical analysis. J. Electrochem. Soc. 143, 3927 (1996)CrossRefGoogle Scholar
  46. 46.
    Madore, C. and Landolt, D.: Blocking inhibitors in cathodic leveling II. Experimental investigation. J. Electrochem. Soc. 143, 3936 (1996)CrossRefGoogle Scholar
  47. 47.
    Josell, D.; Baker, B.; Witt, C.; Wheeler, D.; and Moffat, T. P.: Via filling by electrodeposition superconformal silver and copper and conformal nickel. J. Electrochem. Soc. 149, C637 (2002)CrossRefGoogle Scholar
  48. 48.
    Moffat, T. P.; Wheeler, D.; Witt, C.; and Josell, D.: Superconformal electrodeposition using derivitized substrates. Electrochem. Solid State Lett. 5, C110 (2002)CrossRefGoogle Scholar
  49. 49.
    Josell, D.; Wheeler, D.; Huber, W. H.; and Moffat, T. P.: Superconformal electrodeposition in submicron features. Phys. Rev. Lett. 87, 016102 (2001)CrossRefGoogle Scholar
  50. 50.
    Moffat, T. P.; Wheeler, D.; Huber, W. H.; and Josell, D.: Superconformal electrodeposition of copper. Electrochem. Solid State Lett. 4, C26 (2001)CrossRefGoogle Scholar
  51. 51.
    West, A. C.; Mayer, S.; and ReidJ.: A superfilling model that predicts bump formation. Electrochem. Solid State Lett. 4, C50 (2001)CrossRefGoogle Scholar
  52. 52.
    Wheeler, D.; Josell, D.; and Moffat, T. P.: Modeling superconformal electrodeposition using the level set method. J. Electrochem. Soc. 150, C302 (2003)CrossRefGoogle Scholar
  53. 53.
    Josell, D.; Moffat, T. P.; and Wheeler, D.: An exact algebraic solution for the incubation period of superfill. J. Electrochem. Soc. 151, C19 (2004)CrossRefGoogle Scholar
  54. 54.
    Haba, T.; Itabashi, T.; Akahoshi, H.; Sano, A.; Kobayashi, K.; Miyazaki, H.: Electrochemical and simulative studies of trench filling mechanisms in the copper Damascene electroplating process. Mater. Trans. 43, 1593 (2002)CrossRefGoogle Scholar
  55. 55.
    Lukes, R. M.: The chemistry of the autocatalytic reduction of copper by alkaline formaldehyde. Plating 51, 1066 (1964)Google Scholar
  56. 56.
    Wagner, C. and Traud, W.: Über die deutung von korrosionsvorgängen durch überlagerung von elektrochemischen teilvorgängen und über die potenialbildung an mischelektroden. Z Elektrochem. 44, 391 (1938)Google Scholar
  57. 57.
    Feldman, B. J. and Melroy, O. R.: The mechanism of electroless Cu deposition: extraction of the oxidative and reductive electrochemical half-cell currents from a complete bath. J. Electrochem. Soc. 136, 640 (1989)CrossRefGoogle Scholar
  58. 58.
    Schumacher, R.; Pesek, J. J.; and Melroy, O. R.: Kinetic analysis of electroless deposition of copper. J. Phys. Chem. 89, 4338 (1985)CrossRefGoogle Scholar
  59. 59.
    Okinaka, Y. and Osaka, T.: Advances in electrochemical science and engineering. In: Gerischer, H. and Tobias, C. W.: (Eds.) VCH Publishers Inc, Weinheim, 387 (1994)Google Scholar
  60. 60.
    Wang, Z. L.; Yaegashi, O.; Sakaue, H.; Takahagi, T.; and Shingubara, S.: Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating. J. Electrochem. Soc. 151, C781 (2004)CrossRefGoogle Scholar
  61. 61.
    Wang, Z. L.; Yaegashi, O.; Sakaue, H.; Takahagi, T.; and Shingubara, S.: Effect of additives on hole filling characteristics of electroless copper plating. Jpn. J. Appl. Phys. PART 1. 43, 7000 (2004)CrossRefGoogle Scholar
  62. 62.
    Shingubara, S.;Wang, Z. L.; Yaegashi, O.; Obata, R.; Sakaue, H.; and Takahagi, T.: Bottom-up fill of copper in deep submicrometer holes by electroless plating. Electrochem. Solid State Lett. 7, C78 (2004)CrossRefGoogle Scholar
  63. 63.
    Kim, J. J.; Kim, S. K.; and Kim, Y. S.: Catalytic behavior of 3-mercapto-1-propane sulfonic acid on Cu electrodeposition and its effect on Cu film properties for CMOS device metallization. J. Electroanal. Chem. 542, 61 (2003)CrossRefGoogle Scholar
  64. 64.
    Lee, C. H.; Lee, S. C.; and Kim, J. J.: Improvement of electrolessly gap-filled Cu using 2,2’-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS). Electrochem. Solid State Lett. 8, C110 (2005)CrossRefGoogle Scholar
  65. 65.
    Lee, C. H.; Lee, S. C.; and Kim, J. J.: Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS). Electrochim. Acta. 50, 3563 (2005)CrossRefGoogle Scholar
  66. 66.
    Hasegawa, M.; Okinaka, Y.; Shacham-DiamandY.; and Osaka, T.: Void-free Trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives. Electrochem. Solid-State Lett. 9, C138 (2006)CrossRefGoogle Scholar
  67. 67.
    ReidJ.; Mayer, S.; Broadbent, E.; Klawuhn, E.; and Ashtiani, K.: Factors influencing Damascene feature fill using copper PVD and electroplating. Solid State Technol. 43, 86 (2000)Google Scholar
  68. 68.
    Dubin, V. M.; Shacham-DiamandY.; Zhao, B.; Vasudev, P. K.; and Ting, C. H.: Selective and blanket electroless copper deposition for ultralarge scale integration. J. Electrochem. Soc. 144, 898 (1997)CrossRefGoogle Scholar
  69. 69.
    Lee, C. H.; Hwang, S.; Kim, S. C.; and Kim, J. J.: Cu electroless deposition onto Ta substrates. Electrochem. Solid State Lett. 9, C157 (2006)CrossRefGoogle Scholar
  70. 70.
    Kim, S. K.; Cho, S. K.; Kim, J. J.; and Lee, Y. S.: Superconformal Cu electrodeposition on various substrates. Electrochem. Solid State Lett. 8, C19 (2005)CrossRefGoogle Scholar
  71. 71.
    Kim, Y. S.; Bae, D. L.; Yang, H. C.; Shin, H. S.; Wang, G. W.; Senkevich, J. J.; and Lu, T. M.: Direct copper electroless deposition on a tungsten barrier layer for ultralarge scale integration. J. Electrochem. Soc. 152, C89 (2005)CrossRefGoogle Scholar
  72. 72.
    Wang, Z. L.; Sakaue, H.; Shingubara, S.; and Takahagi, T.: Influence of surface oxide of sputtered TaN on displacement plating of Cu. Jpn. J. Appl. Phys. PART 1 42, 1843 (2003)CrossRefGoogle Scholar
  73. 73.
    Kim, J. J.; Kim, S. K.; Lee, C. H.; and Kim, Y. S.: Investigation of various copper seed layers for copper electrodeposition applicable to ultralarge-scale integration interconnection. J. Vac. Sci. Tech. B 21, 33 (2003)CrossRefGoogle Scholar
  74. 74.
    Wang, Z.; Ida, T.; Sakaue, H.; Shingubara, S.; and Takahagi, T.: Electroless plating of copper on metal-nitride diffusion barriers initiated by displacement plating. Electrochem. Solid State Lett. 6, C38 (2003)CrossRefGoogle Scholar
  75. 75.
    Hsu, H. H.; Hsieh, C. C.; Chen, M. H.; Lin, S. J.; and Yeh, J. W.: Displacement activation of tantalum diffusion barrier layer for electroless copper deposition. J. Electrochem. Soc. 148, C590 (2001)CrossRefGoogle Scholar
  76. 76.
    Patterson, J. C.; Nidheasuna, C.; Barrett, J.; Spalding, T. R.; Oreilly, M.; Jiang, X.; and Crean, G. M.: Electroless copper metallisation of titanium nitride. Appl. Surf. Sci. 91, 124 (1995)CrossRefGoogle Scholar
  77. 77.
    Wang, Z. L.; Yaegashi, O.; Sakaue, H.; Takahagi, T.; and Shingubara, S.: Highly adhesive electroless Cu layer formation using an ultra thin Ionized Cluster Beam (ICB)-Pd catalytic layer for sub-100 nm Cu interconnections. Jpn. J. Appl. Phys. PART 2. 42, L, 1223(2003)CrossRefGoogle Scholar
  78. 78.
    Kim, Y. S.; Shin, J.; Cho, J. H.; Ten Eyck, G. A.; Liu, D. L.; Pimanpang, S.; Lu, T. M.; Senkevich, J. J., and Shin, H. S.: Surface characterization of copper electroless deposition on atomic layer deposited palladium on iridium and tungsten. Surf. Coat. Tech. 200, 5760 (2006)CrossRefGoogle Scholar
  79. 79.
    Kim, Y.; Ten Eyck, G. A.; Ye, D. X.; Jezewski, C.; Karabacak, T.; Shin, H. S.; Senkevich, J. J.; and Lu, T. M.: Atomic layer deposition of Pd on TaN for Cu electroless plating. J. Electrochem. Soc. 152, C376 (2005)CrossRefGoogle Scholar
  80. 80.
    Josell, D.; Witt, C.; and Moffat, T. P.: Osmium barriers for direct copper electrodeposition in Damascene processing. Electrochem. Solid State Lett. 9, C41 (2006)CrossRefGoogle Scholar
  81. 81.
    Josell, D.; Bonevich, J. E.; Moffat, T. P.; Aaltonen, T.; Ritala, M.; and Leskela, M.: Iridium barriers for direct copper electrodeposition in Damascene processing. Electrochem. Solid State Lett. 9, C48 (2006)CrossRefGoogle Scholar
  82. 82.
    Moffat, T. P.; Walker, M.; Chen, P. J.; Bonevich, J. E.; Egelhoff, W. F.; Richter, L.; Witt, C.; Aaltonen, T.; Ritala, M.; Leskela, M.; and Josell, D.: Electrodeposition of Cu on Ru barrier layers for Damascene processing. J. Electrochem. Soc. 153, C37 (2006)CrossRefGoogle Scholar
  83. 83.
    Zheng, M.; Willey, M.; and West, A. C.: Electrochemical nucleation of copper on ruthenium effect of Cl, PEG, and SPS. Electrochem. Solid State Lett. 8, C151 (2005)CrossRefGoogle Scholar
  84. 84.
    Radisic, A.; Cao, Y.; Taephaisitphongse, P.; West, A. C.; and Searson, P. C.: Direct copper electrodeposition on TaN barrier layers. J. Electrochem. Soc. 150, C362 (2003)CrossRefGoogle Scholar
  85. 85.
    Josell, D.; Wheeler, D.; Witt, C.; and Moffat, T. P.: Seedless superfill: copper electrodeposition in trenches with ruthenium barriers. Electrochem. Solid State Lett. 6, C143 (2003)CrossRefGoogle Scholar
  86. 86.
    Yoshino, M.; Nonaka, Y.; Sasano, J.; Matsuda, I.; Shacham-DiamandY.; and Osaka, T.: All-wet fabrication process for ULSI interconnect technologies. Electrochim. Acta. 51, 916 (2005)CrossRefGoogle Scholar
  87. 87.
    Osaka, T.; Takano, N.; and Yokoshima, T.: Microfabrication of electro- and electroless-deposition and its application in the electronic field. Surf. Coat. Tech. 169, 1 (2003)Google Scholar
  88. 88.
    Osaka, T.; Takano, N.; Kurokawa, T.; Kaneko, T.; and Ueno, K.: Electroless nickel ternary alloy deposition on SiO2 for application to diffusion barrier layer in copper interconnect technology. J. Electrochem. Soc. 149, C573 (2002)CrossRefGoogle Scholar
  89. 89.
    Osaka, T.; Takano, N.; Kurokawa, T.; and Ueno, K.: Fabrication of electroless NiReP barrier layer on SiO2 without sputtered seed layer. Electrochem. Solid State Lett. 5, C7 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tetsuya Osaka
    • 1
  • Madoka Hasegawa
    • 1
  • Masahiro Yoshino
    • 1
  • Noriyuki Yamachika
    • 1
  1. 1.Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations