ALD Seed Layers for Plating and Electroless Plating

  • Jay J. SenkevichEmail author


Atomic layer deposition (ALD) in many ways is a logical extension of chemical vapor deposition (CVD) with close scrutiny over precursor deliver and one other aspect, namely, the process and chemistry defined by its self-limiting nature. During each pulse of precursor, no more than one chemical monolayer, which is often a metallorganic, is chemisorbed onto the substrate surface. The discussion here is focused on metal ALD; however, much of the discussion can be applied to other ALD systems. The precursor delivery with ALD is modulated unlike CVD where the precursors are all delivered together. In both cases a carrier and process gas is used with low pressure conditions (∼1 mTorr to ∼10 Torr regime). CVD can be conceptually written out according to Equation (12.1).


Atomic Layer Deposition Seed Layer Reflection High Energy Electron Diffraction Electroless Deposition Glyoxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Senkevich, J. J.; Mitchell, C. J.; Yang, G.-R.; and Lu, T.-M.: Reduced sulfur-terminated silanes to promote the interaction of palladium(II) hexafluoroacetylacetonate with dielectric surfaces. Colloids Surf. A 221(1–3), 29 (2003)CrossRefGoogle Scholar
  2. 2.
    Senkevich, J. J.; Tang, F.; Rogers, D.; Drotar, J. T.; Wang, G.-C.; Lu, T.-M.; Jezewski, C.; and Lanford, W. A.: Substrate independent palladium atomic layer deposition. Chem. Vap. Dep. 9(5), 258 (2003)CrossRefGoogle Scholar
  3. 3.
    Adamson, A. W.: Physical Chemistry of Surfaces, 5th Ed., John Wiley & Sons, New York (1990)Google Scholar
  4. 4.
    Suntola, T.: Atomic Layer Epitaxy, Simpson, M. (ed.), Blackie, Chapman & Hall (1990)Google Scholar
  5. 5.
    Kim, G. Y.; Srivinastava, A.; Foote, D.; Londergan, A.; Karim, Z.; Ramanathan, S.; and Seidel, T.: AVS Science and Technology, ALD 2004, Abstract Book, Helsinki, (2004)Google Scholar
  6. 6.
    Senkevich, J. J.; Yang, G.-R.; Tang, F.; Wang, G.-C.; Lu, T.-M.; Cale, T. S.; Jezewski, C.; and Lanford, W. A.: Substrate-independent sulfur-activated dielectric and barrier-layer surfaces to promote the chemisorption of highly polarizable metallorganics. Appl. Phys. A 79(7), 1789 (2004)CrossRefGoogle Scholar
  7. 7.
    Hagedorn, C. J.; Weiss, M. J.; and Weinberg, W. H.: Dissociative chemisorption of hydrogen on Ir(111): Evidence for terminal site adsorption. Phys. Rev. B 60(20), R14016–8 (1999)CrossRefGoogle Scholar
  8. 8.
    Ten Eyck, G. A.; Senkevich, J. J.; Tang, F.; Tang, F.; Liu, D.; Pimanpang, S.; Karabacak, T.; Wang, G.-C.; Lu, T.-M.; Jezewski, C.; and Lanford, W. A.: Plasma-assisted atomic layer deposition of palladium. Chem. Vap. Dep. 11(1), 60 (2005)CrossRefGoogle Scholar
  9. 9.
    Solanki, R. and Pathangey, B.: Atomic layer deposition of copper seed layers. Electrochem. Solid-State Lett. 3(10), 479 (2000)CrossRefGoogle Scholar
  10. 10.
    Hsu, H.-H.; Lin, K.-H.; Lin, S.-J.; and Yeh, J.-W.: Electroless copper deposition for ultralarge-scale integration. J. Electrochem. Soc. 148(1), C47(2001)CrossRefGoogle Scholar
  11. 11.
    Diamand, Y. S.: Electroless copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization. Electrochem. Solid-State Lett. 3(6), 279 (2000)CrossRefGoogle Scholar
  12. 12.
    Jezewski, C.; Lanford, W. A.; Wiegand, C. J.; Singh, J. P.; Wang, P.-I.; Senkevich, J. J.; and Lu T.-M.: Inductively coupled hydrogen plasma-assisted Cu ALD on metallic and dielectric surfaces. J. Electrochem. Soc. 152(2), C60 (2005)CrossRefGoogle Scholar
  13. 13.
    Toerndahl, T.; Ottosson, M.; and Carlsson, J.-O.: Growth of copper metal by atomic layer deposition using copper(I) chloride, water and hydrogen as precursors. Thin Solid Films 458(1–2), 129 (2004)CrossRefGoogle Scholar
  14. 14.
    Zangwill, A. and Soven, P.: Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases. Phys. Rev. A 21, 1561 (1980)CrossRefGoogle Scholar
  15. 15.
    Back, R. A. and Yamamoto, S.: Gas-phase photochemistry and thermal decomposition of glyoxylic. Acid. Can. J. Chem. 63, 542 (1985)CrossRefGoogle Scholar
  16. 16.
    Kim, Y.-S.; Kim, H.-I.; Cho, J.-H.; Seo, H.-K.; Dar, M. A.; Shin, H.-S.; Ten Eyck, G. A.; Lu, T.-M.; and Senkevich J. J.: Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer. Electrochmica Acta. 51(12), 2400 (2006)CrossRefGoogle Scholar
  17. 17.
    Hong, S. W.; Shin, C.-H.; and Park, J.-W.: Palladium activation on TaNx barrier films for autocatalytic electroless copper deposition. J. Electrochem. Soc. 149(1), G85 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Brewer Science IncRollaUSA

Personalised recommendations