Advertisement

Challenges in ULSI Interconnects - Introduction to the Book

  • Y. Shacham-Diamand
Chapter

Abstract

Ultra large-scale integration (ULSI) technology is one of the most dominant and important technologies of the 21st century. It is the base for the global electronics system industry.

Keywords

Chemical Mechanical Polishing Parasitic Capacitance Dynamic Random Access Memory Barrier Layer Thickness Actual Transition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kilby, J. S.: Invention of the integrated circuit. IEEE Trans. Electron. Devices 23, 648 (1976)CrossRefGoogle Scholar
  2. 2.
    van Zant, P.: Microchip Fabrication: A Practical Guide to Semiconductor Processing. McGraw Hill, New York (2000)Google Scholar
  3. 3.
    Campbell, S. A.: The Science and Engineering of Microelectronic Fabrication. Oxford University Press, New York (2001)Google Scholar
  4. 4.
  5. 5.
    Murarka, S. P.: Transition metal silicides. Ann. Rev. Mater. Sci. 13, 117 (1983)CrossRefGoogle Scholar
  6. 6.
    Shacham-Diamand, Y.: Barrier layers for Cu ULSI metallization. J. Electronic Mater. 30(4), 336–344 (2001)CrossRefGoogle Scholar
  7. 7.
    Davis, J. A.; Venkatesan, R.; Kaloyeros, A.; Beylansky, M.; Souri, S. J.; Banerjee, K.; Member IEEE, Saraswat, K. C.; and Rahman A.: Interconnect limits on Gigascale Integration (GSI) In the 21st century. Proc. IEEE 89(3), (2001)Google Scholar
  8. 8.
    Havemann, R. H.; and Hutchby, J. A.: High-performance interconnects: An integration overview. Proc. IEEE 89(5), 586–601, (2001)Google Scholar
  9. 9.
    Edelstein, M. D.; Sai-Halasz, G. A.; and Mii, Y.-J.: LSl on-chip interconnection performance simulations and measurements. IBM J. Res. & Dev. 39(4), 383–401 (1995)CrossRefGoogle Scholar
  10. 10.
    Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.: Damascene copper electroplating for chip interconnections. IBM J. Res. & Dev. 12(5), 567–574 (1998)CrossRefGoogle Scholar
  11. 11.
    Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; and Josell, D.: Superconformal film growth: Mechanism and quantification. IBM J. Res. & Dev. 49(1), 19–36, (2005)Google Scholar
  12. 12.
    Ritzdorf, T. L.; Wilson, G. J.; McHugh, P. R.; Woodruff, D. J.; Hanson, K. M.; and Fulton, D.: Design and modeling of equipment used in electrochemical processes for microelectronics. IBM J. Res. & Dev. 49(1), 65–87, (2005)Google Scholar
  13. 13.
    Ritala, M.; Kalsi, P.; Riihela, D.; Kukli, K.; Leskela, M.; and Jokinen, J.: Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition. Chem. Mater. 11, 1712 (1999)CrossRefGoogle Scholar
  14. 14.
    Rossnagel, S. M.; Sherman, A.; and Turner, F.: Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers. J. Vac. Sci. and Technol. B18, 2016 (2000)Google Scholar
  15. 15.
    Pathangey, B. and Solanki, R.: Atomic layer deposition for nanoscale thin films. Vac. Technol. Coating 1, 32 (2000)Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.School of EE, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations