Skip to main content

Carbon Dioxide Technologies

  • Chapter
  • First Online:

Abstract

Besides being a greenhouse gas and a major component of the carbon cycle in nature, carbon dioxide (CO2, CAS 124-38-9) is a substance of major industrial importance. It has a stable linear molecule in which each atom of oxygen is linked with two strong covalent bonds to the atom of carbon. The number of industrial processes using carbon dioxide is very large; it is used for welding; plastics; synthetic fuel processing; oil, gas, and coal-bed methane recovery; refrigerant; heat transfer fluid (e.g., in refrigeration applications and for gas-cooled nuclear reactors); cryogenic cooling (e.g., dry ice); working fluid in power and heat pump cycles, beverage and food processing and preservation; pharmaceutical and processing industry; pneumatic systems; fighting; fire; powder processing; spray painting and coating; polymerization; separation technologies; crystallization processes; dyeing and dry cleaning of textiles; chemical extractions; various chemical reactions; and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Area, m2

C :

Concentration

COP:

Coefficient of performance

d :

Diameter, m

D :

Diffusion coefficient, m2/s

g :

Specific Gibbs energy, kJ/kg

j :

Mass velocity, kg/s.m2

K :

Equilibrium constant

m :

Mass, kg

m :

Mass flow rate, kg/s

h :

Specific enthalpy, kJ/kg

HHV:

Higher heating value, MJ/kg

R :

Universal gas constant, J/kmol.K

P :

Pressure, Pa

q :

Mass specific heat, kJ/kg

s :

Specific entropy, kJ/kg.K

S :

Entropy, kJ/K

T :

Temperature, K

v :

Specific volume, m3/kg

\( \dot{V} \) :

Volume flow rate, m3/s

w :

Specific work, kJ/kg

x :

Vapor quality or hydrogen fraction

y :

Ice fraction

α :

Membrane permeability

δ :

Solubility parameter, N0.5/m or thickness, m

η :

Efficiency or dynamic viscosity, Ns/m2

ν :

Kinematic viscosity, m2/s

ψ :

Exergetic efficiency

ρ :

Density, kg/m3

σ :

Surface tension, g/s2

τ :

Reduced temperature

0:

Reference state

c:

Critical

comp:

Compression

ex:

Exergy

ext:

Extracted

F:

Feed

i:

Input

inp:

Input

L:

Liquid

L,V:

Liquid–vapor

mem:

Membrane

o:

Output

p:

Permeate

ref:

Refrigeration

res:

Removal

sub:

Sublimation

V:

Vapor

t:

Triple

References

  • Aaron D., Tsouris C. 2005. Separation of CO2 from flue gas. Separation Science and Technology 40:321–348.

    Article  Google Scholar 

  • Cen Y., Lichtenthaler R.N. 1995. Vapor permeation. In: Membrane Separation Technology; Principles and Applications, Chapter 3. Noble R.D., Stern S.A. eds., Elsevier, Syracuse, NY.

    Google Scholar 

  • Desimone J.M., Tumas W. 2003. Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Fernandez Tumas Cid M.V., Van der Kraan M., Veugelers W.J.T., Woerlee G.F., Witkamp G.J. 2004. Kinetics study of a dichlorotriazine reactive dye in supercritical carbon dioxide. Journal of Supercritical Fluids 32:147–152.

    Article  Google Scholar 

  • Gilbert P.M., Azanza R., Burford M., Furuya K., Abal E., Al-Azri A. et al. 2008. Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution Bulletin 56:1049–1056.

    Article  Google Scholar 

  • Gottlicher G., Pruschek R. 1997. Comparison of CO2 removal systems for fossil-fuelled power plant processes. Energy Conversion and Management 38:S173–S178.

    Article  Google Scholar 

  • Kersh C., Van Roosmalen M.J.E., Woerlee G.F., Witkamp G.J. 2000. Extraction of heavy metals from fly ash and sand with ligands and supercritical carbon dioxide. Industrial and Engineering Chemistry Research 39:4670–4672.

    Article  Google Scholar 

  • Klein S.A. 2010. Engineering Equation Solver (Academic Commercial v.8.629).

    Google Scholar 

  • Li X., Hagman E., Tsouris C., Lee J.W. 2003. Removal of carbon dioxide from flue gas by ammonia carbonation in gas phase. Energy and Fuels 17:69–74.

    Article  Google Scholar 

  • Lorentzen G. 1994. Revival of carbon dioxide as a refrigerant. Internal Journal of Refrigeration 17:292–302.

    Article  Google Scholar 

  • Mazzoldi A., Hill T., Colls, J.J. 2008. CO2 transportation for carbon storage: sublimation of carbon dioxide from a dry ice bank. International Journal of Greenhouse Gas Control 2:210–218.

    Article  Google Scholar 

  • Posada A., Manousiouthakis V. 2006. Hydrogen and dry ice production through phase equilibrium separation and methane reforming. Journal of Power Sources 156:480–488.

    Article  Google Scholar 

  • Secretariat 2006 of the Convention on Biological Diversity. 2009. Scientific Synthesis of the Impacts of Ocean Fertilization on Marine Biodiversity. Montreal, Technical Series No. 45.

    Google Scholar 

  • Seifritz W. 1993. The terrestrial storage of CO2-dry ice. Energy Conversion and Management34:1121–1141.

    Article  Google Scholar 

  • Somayajulu G.R. 1988. A generalized equation for surface tension from the triple point to the critical point. International Journal of Thermophysics 9:559–566.

    Article  Google Scholar 

  • Span R., Wagner W. 1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25:6.

    Article  Google Scholar 

  • Vesovic V., Wakeham A., Olchowy G.A., Sengres J.V., Watson J.T.R., Millar J. 1990. The transport properties of carbon dioxide. Journal of Physical and Chemical Reference Data 19:763–808.

    Article  Google Scholar 

  • Yave W., Anja C., Peinemann K.-W. 2010. Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science 350:124–129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Dinçer .

Study Questions/Problems

Study Questions/Problems

  1. 14.1

    Present a classification of carbon dioxide technologies.

  2. 14.2

    What feature makes carbon dioxide an excellent working fluid and process separation medium?

  3. 14.3

    What is supercritical carbon dioxide?

  4. 14.4

    What is dry ice and how it is obtained?

  5. 14.5

    Define the solubility strength.

  6. 14.6

    Calculate the cycle from Fig. 14.6 such that you obtain the diagram from Fig. 14.7.

  7. 14.7

    Calculate a supercritical power cycle with carbon dioxide operating at 120 bar and with 200°C maximum temperature in the cycle. Take the isentropic efficiency of the turbine 0.8.

  8. 14.8

    Calculate the process illustrated in Fig. 14.11 such that you obtain the diagram from Fig. 14.12.

  9. 14.9

    Calculate the cycle represented in Fig. 14.18.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dinçer, İ., Zamfirescu, C. (2011). Carbon Dioxide Technologies. In: Sustainable Energy Systems and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-95861-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-95861-3_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-95860-6

  • Online ISBN: 978-0-387-95861-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics