Skip to main content

Hydrogen and Fuel Cell Systems

  • Chapter
  • First Online:

Abstract

The hydrogen economy emerged as a potential response to two major problems that mankind faces today, namely, its dependence on fossil fuels and the high level of pollution associated with the fossil fuel combustion process. Indeed, the exploitable and proved fossil fuel reserves are limited. As a consequence of population growth and industrial development of the Asiatic continent (with countries like China and India counting over one billion people each), the rate of fossil fuel exploitation increases constantly together with their costs and the associated pollution levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

C :

Cost, $ or concentration

CI :

Cost index

e :

Elementary charge, C

E :

Energy, kJ

EIRF:

Environmental impact reduction factor

ex :

Specific exergy, kJ/kg

Ex :

Exergy, kJ

D p :

Depletion factor

f :

Volume fraction

F :

Faraday constant, As/mol

G :

Gibbs free energy, kJ/mol

h :

Specific enthalpy, kJ/kg or heat transfer coefficient, W/m2K

H :

Enthalpy, kJ/kg

HHV:

Higher heating value, MJ/kg

I :

Solar irradiance, W, or current intensity, A

k :

Thermal conductivity, W/mK

LHV:

Lower heating value, MJ/kg

m :

Mass, kg

MR :

Mols ratio

n :

Number of mols

N A :

Number of Avogadro

P :

Pressure, bar

Q :

Heat, kJ

R :

Universal gas constant, J/molK

s :

Specific entropy, kJ/kgK

S :

Entropy, kJ/K

SI:

Sustainability index

T :

Temperature, K

U :

Overall heat transfer coefficient, W/m2K

V :

Voltage, V

W :

Work, kJ

\( \delta \) :

Thickness, m

\( \gamma \) :

Specific heat ratio

\( \Delta \) :

Difference

\( \lambda \) :

Excess ratio

\( \phi \) :

Compactness factor, kW/m3

\( \eta \) :

Utilization efficiency

\( \psi \) :

Exergy efficiency

\( \upsilon \) :

System volume, m3

0:

Reference state

C:

Condenser

Cmp:

Compresser

E:

Electrical

EL:

Electrolysis

FC:

Fuel cell

gen:

Generator

geo:

Geothermal

H:

Heating

hx:

Heat exchanger

hr:

Heat recovery

in:

Inlet

ins:

Insulation

m:

Material or mean

N:

Nernst

o:

Output

oc:

Open circuit

ohm:

Ohmic

ox:

Oxidation

OP:

Other product

PF:

Primary fuel

pmp:

Pump

red:

Reduction

S:

Salt

sc:

Short circuit

SF:

Synthetic fuel

SH:

Space heating

TH:

Thermal

TOT:

Total

W:

Wall

WF:

Working fluid

ch:

Chemical

thrm:

Thermomechanical

\( \mathop {{(\;\;)}}\limits^. \) :

Rate (per unit of time)

\( \mathop {{(\;\;)}}\limits^{-} \) :

Average value

References

  • Abanades S., Charvin P., Flamant G., Neveu P. 2006. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822.

    Google Scholar 

  • Abuadala A., Dincer I., Naterer G.F. 2010. Exergy analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy 35:4981–4990.

    Article  Google Scholar 

  • Ay M., Midilli A., Dincer I. 2006. Investigation of hydrogen production from boron compounds for PEM fuel cells. Journal of Power Sources 157:104–113.

    Article  Google Scholar 

  • Balta M.T., Dincer I., Hepbasli A. 2009. Thermodynamic assessment of geothermal energy use in hydrogen production. International Journal of Hydrogen Energy 34:2925–2939.

    Article  Google Scholar 

  • Brewer K.J., Elvington M. 2006. Supramolecular complexes as photocatalysts for the production of hydrogen from water. US Patent 7,122,172 B2.

    Google Scholar 

  • CHA 2010. Hydrogen systems. The Canadian opportunity for greenhouse gas reduction and economic growth through the deployment of hydrogen technologies and infrastructures. Canadian Hydrogen Association. Internet source http://www.h2.ca (accessed on September 1, 2010).

  • Christensen P.A., Erbs W., Harriman A. 1985. Photo-oxydation of water in non-sacrificial systems. Journal of Chemical Society, Faraday Transactions 81:575–580.

    Article  Google Scholar 

  • Cohce M.K., Dincer I., Rosen M.A. 2010. Thermodynamic analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy 35:4970–4980.

    Article  Google Scholar 

  • Collings A.F., Critchley C. 2005. Artificial Photosynthesis from Basic Biology to Industrial Application. Wiley-VCH Verlag GmbH & Co, Weinheim, Germany.

    Book  Google Scholar 

  • Colpan C.O., Dincer I., Hamdullahpur F. 2008. A review on macro-level modeling of planar solid oxide fuel cells. International Journal of Energy Rresearch 32:336–355.

    Article  Google Scholar 

  • Das D., Veziroglu T.N. 2008. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33:6046–6057.

    Article  Google Scholar 

  • Dincer I. 2002. Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy 27:265–285.

    Article  Google Scholar 

  • Dincer I., Rosen M.A. 2007. Exergy: Energy, Environment and Sustainable Development. Elsevier, Oxford, UK.

    Google Scholar 

  • Evans A., Strezov V., Evans T.J. 2009. Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews 13:1082–1088.

    Article  Google Scholar 

  • Fujishima A., Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38.

    Article  Google Scholar 

  • Granovskii M., Dincer I., Rosen M.A., Pioro I. 2008a. Performance assessment of a combined system to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle for hydrogen production. Energy Conversion and Management 49:1873–1881.

    Article  Google Scholar 

  • Granovskii M., Dincer I., Rosen M.A. 2008b. Exergy analysis of a gas turbine cycle with steam generation for methane conversion within solid oxide fuel cells. Journal of Fuel Cell Science and Technology 5/031005:1–9.

    Google Scholar 

  • Gutsol A.F., Fridman A. 2008. Hydrogen production from hydrogen sulfide. Patent #WO 137936.

    Google Scholar 

  • Haseli Y., Naterer G.F., Dincer I. 2009. Fluid-particle mass transport of cupric chloride hydrolysis in a fluidized bed. International Journal of Heat and Mass Transfer 52:2507–2515.

    Article  Google Scholar 

  • Isachenko V.P., Osipova V.A., Sukomel A.S. 2004. Heat transfer. In: Solid Fuels Combustion and Gasification Modeling, Simulation, and Equipment Operation, de Souza-Santos M.L., eds.,Marcel Dekker, New York.

    Google Scholar 

  • Kalinci Y., Hepbasli A. Dincer I. 2009. Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy 34:8799–8817.

    Article  Google Scholar 

  • Kanoglu M. Dincer I., Rosen M.A. 2007. Geothermal energy use in hydrogen liquefaction. International Journal of Hydrogen Energy 32:4250–4257.

    Article  Google Scholar 

  • Karkamkar A., Ardahl C., Autrey T. 2007. Recent developments on hydrogen release from ammonia borane. Mater Matters 2:6–9.

    Google Scholar 

  • Kogan A. 1998. Direct solar thermal splitting of water and onsite separation of the products. II. Experimental feasibility study. International Journal of Hydrogen Energy 23:89–98.

    Article  Google Scholar 

  • Kotay S.M., Das D. 2008. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy 33:258–63.

    Article  Google Scholar 

  • Koutrouli E.K., Kalfas H., Gavala H.N., Skiadas I.V., Stamatelatou K., Lyberatos G. 2009. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresource Technology 100:3718–3723.

    Article  Google Scholar 

  • Licht S., Wang B., Mukerji S., Soga T., Umeno M., Tributsch H. 2001. Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. International Journal of Hydrogen Energy 26:653–659.

    Article  Google Scholar 

  • Marmier A., Füterer M.A. 2008. Nuclear powered heat pumps for near-term process heat applications. Nuclear Engineering and Design 238:2272–2284.

    Article  Google Scholar 

  • Midilli A., Murat Ay, Kale A., Veziroglu T.N. 2007. A parametric investigation on hydrogen energy potential based on H2S Black Sea deep waters. International Journal of Hydrogen Energy 32:117–124.

    Article  Google Scholar 

  • Muradov N.Z., Veziroglu T.N. 2008. “Green” path from fossil-based to hydrogen economy: An overview of carbon neutral technologies. International Journal of Hydrogen Energy 33:6804–6839.

    Article  Google Scholar 

  • Naterer G.F., Suppiah S., Lewis M., Gabriel K., Dincer I., Rosen M.A., Fowler M., Rizvi G., Easton E.B., Ikeda B.M., Kaye M.H., Lu L., Pioro I., Spekkens P., Tremaine P., Mostaghimi J., Avsec J., Jiang J. 2009. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle. International Journal of Hydrogen Energy 34:2901–2917.

    Article  Google Scholar 

  • Orhan M.F., Dincer I., Naterer G.F. 2008a. Cost analysis of a thermo-chemical Cu–Cl pilot plant for nuclear-based hydrogen production. International Journal of Hydrogen Energy 33:6006–6020.

    Article  Google Scholar 

  • Orhan M.F., Dincer I., Rosen M.A. 2008b. Thermodynamic analysis of the copper production step in a copper–chlorine cycle for hydrogen production. Thermochimica Acta 480:22–29.

    Article  Google Scholar 

  • Orhan M.F., Dincer I., Rosen M.A. 2009a. Efficiency analysis of a hybrid copper–chlorine (Cu–Cl) cycle for nuclear-based hydrogen production. Chemical Engineering Journal 155:132–137.

    Article  Google Scholar 

  • Orhan M.F., Dincer I., Rosen M.A. 2009b. Energy and exergy analyses of the fluidized bed of a copper–chlorine cycle for nuclear-based hydrogen production via thermo-chemical water decomposition. Chemical Engineering Research and Design 87:684–694.

    Article  Google Scholar 

  • Orhan M.F., Dincer I., Rosen M.A. 2009c. The oxygen production step of a copper–chlorine thermo-chemical water decomposition cycle for hydrogen production: Energy and exergy analyses. Chemical Engineering Science 64:860–869.

    Article  Google Scholar 

  • Rashidi R., Berg P., Dincer I. 2009. Performance investigation of a combined MCFC system. International Journal of Hydrogen Energy 34:4395–4405.

    Article  Google Scholar 

  • Sørensen R.Z., Hummelshøj J.S., Klerke A., Reves J.B., Vegge T., Nørskov J.K., Christensen C.H. 2008. Indirect, reversible high density hydrogen storage in compact metal ammines. Journal of American Chemical Society 130:8660–8668.

    Article  Google Scholar 

  • Taylor J.B. 1983. Hydrogen energy prospects in Canada. International Journal of Hydrogen Energy 1/2:1–7.

    Google Scholar 

  • Yilanci A., Dincer I., Ozturk H.K. 2009. A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science 35:231–244.

    Article  Google Scholar 

  • Zaman J., Chakma A. 1995. Production of hydrogen and sulphur from hydrogen sulfide. Fuel Processing Technology 41:159–198.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I. 2009a. Performance investigation of high-temperature heat pumps with various BZT working fluids. Thermochimica Acta 488:66–77.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I. 2009b. Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Processing Technology 90:729–737.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I. 2009c. Thermodynamic performance analysis and optimization of a SOFC-H+ system. Thermochimica Acta 486:32–40.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I., Naterer G.F. 2009a. Performance evaluation of organic and titanium based working fluids for high temperature heat pumps. Thermochimica Acta 496:18–25.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I., Naterer G.F. 2010a. Thermophysical properties of copper compounds in copper–chlorine thermochemical water splitting cycles. International Journal of Hydrogen Energy 35:4839–4852.

    Article  Google Scholar 

  • Zamfirescu C., Dincer I., Naterer G.F. 2010b. Upgrading of waste heat for combined power and hydrogen production with nuclear reactors. Journal of Engineering for Gas Turbines and Power 132/102911:1–9.

    Google Scholar 

  • Zamfirescu C., Dincer I., Naterer G.F. 2010c. Design and analysis of a photocatalytic hydrogen production system with mixed-metal photoinitiated electron collection. International Conference on Hydrogen Production (ICH2P), Istanbul, June 16-18.

    Google Scholar 

  • Zamfirescu C., Dincer I., Naterer G.F. 2010d. Biomass-based heat driven water splitting using copper-chlorine cycle. Eightieth World Hydrogen Energy Conference (WHEC 2010) Essen, Germany, May 16-20.

    Google Scholar 

  • Zamfirescu C., Naterer G.F., Dincer I. 2010e. Kinetics study of the copper/hydrochloric acid reaction for thermochemical hydrogen production. International Journal of Hydrogen Energy 35:4853–4860.

    Article  Google Scholar 

  • Zamfirescu C., Naterer G.F., Dincer I. 2010f. Novel CuCl vapor compression heat pump integrated with a water splitting plant. Thermochimica Acta 512:40–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Dinçer .

Study Questions/Problems

Study Questions/Problems

  1. 13.1

    What characteristics of hydrogen make it attractive for energy economy?

  2. 13.2

    Describe the idea of hydrogen economy.

  3. 13.3

    Categorize the methods for hydrogen production.

  4. 13.4

    Calculate the reaction enthalpy and the Gibbs energy of water decomposition reaction at 25°, 1,000°, and 2,500°C and compare the results.

  5. 13.5

    Calculate the energy efficiency of the system in Fig. 13.5 using the data from Table 13.3.

  6. 13.6

    Explain the concept of thermochemical water splitting.

  7. 13.7

    Calculate the reaction heat for Eq. (13.15).

  8. 13.8

    Describe the S–I cycle.

  9. 13.9

    What is the difference between fuel reforming and gasification?

  10. 13.10

    Calculate the reaction heats for Eq. (13.27) at 1,000°C.

  11. 13.11

    Describe the nuclear–thermal routes for hydrogen production.

  12. 13.12

    What are the envisaged hydrogen production methods coupled with nuclear reactors?

  13. 13.13

    Calculate the reaction heats for Eq. (13.37) at 1,100°C.

  14. 13.14

    Making reasonable assumptions, calculate the copper chlorine hydrogen production cycle in Fig. 13.21.

  15. 13.15

    Making reasonable assumptions, calculate the biomass-driven high-temperature electrolysis cycle in Fig. 13.29.

  16. 13.16

    Explain the principle of photocatalytic water splitting.

  17. 13.17

    Calculate the reaction enthalpy for Eq. (13.43) at standard temperature.

  18. 13.18

    Calculate the work needed to compress 1 kg of hydrogen from 1 bar pressure to 800 bar according to the process described by Eq. (13.46).

  19. 13.19

    Calculate the simplified Claude cycle in Fig. 13.44 under reasonable assumptions.

  20. 13.20

    Comment on the storage density of various hydrogen storage methods according to Fig. 13.45.

  21. 13.21

    Comment on the potential of ammonia borane for hydrogen storage. Investigate the sufficiency of natural reserves of boron.

  22. 13.22

    Compare the hydrogen utilization in Canada in 1983 with respect to 2010.

  23. 13.23

    Describe the fuel cell principle.

  24. 13.24

    Is the fuel cell operation benefited by high pressure and low temperature or by low pressure and high temperature?

  25. 13.25

    Present a classification of fuel cell types.

  26. 13.26

    Present a classification of fuel cell applications.

  27. 13.27

    Calculate the system in Fig. 13.50 under reasonable assumptions.

  28. 13.28

    Calculate the system in Fig. 13.51 under reasonable assumptions.

  29. 13.29

    Calculate the system in Fig. 13.52 under reasonable assumptions.

  30. 13.30

    Calculate the system in Fig. 13.54 under reasonable assumptions.

  31. 13.31

    Calculate the system in Fig. 13.56 under reasonable assumptions.

  32. 13.32

    Present a classification of fuel cell modeling techniques.

  33. 13.33

    Explain the equation of Nernst.

  34. 13.34

    Describe the type of energy losses in fuel cells.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dinçer, İ., Zamfirescu, C. (2011). Hydrogen and Fuel Cell Systems. In: Sustainable Energy Systems and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-95861-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-95861-3_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-95860-6

  • Online ISBN: 978-0-387-95861-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics