Advertisement

Application of Optimisation Algorithms to Aircraft Aerodynamics

  • Emanuele Rizzo
  • Aldo Frediani
Conference paper
Part of the Springer Optimization and Its Applications book series (SOIA, volume 33)

Abstract

Reduced operating costs and low environmental impact are required to modern commercial aircraft. The today airplanes are so optimized that a significant increase in performances can hardly be achieved and new configurations are now of interest, supposing to allow a jump forward in drag reduction. In the present work, optimization algorithms are applied to search new aircraft configurations able to satisfy different constraints. The algorithms are first applied to benchmarking problems in order to test their performances and evaluate the computational time. The same algorithms are applied to classical problems of aerodynamics like the optimum wings. At the end, the problem of trim and stability of flight are tackled; we look for wing planforms which satisfy a set of constraints defining the feasible region both in cruise condition and in low speed condition (i.e. when high lift devices are deployed). Finally, a new ultralight optimised aircraft is presented as an example of application.

Keywords

Drag Reduction Sequential Quadratic Programming Local Solver Mesh Adaptive Direct Search Lift Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Kroo, Aircraft Design: Synthesis and Analysis.http://adg.stanford.edu/aa241/AircraftDesign.html, (2007)
  2. 2.
    Busquin, P., Evans, R., Lagardere, J.-L.: The Future of European Aeronautics: a shared VISION for 2020, Air and Space Europe, Aeronautics Days 2001, Elsevier (2001).Google Scholar
  3. 3.
    Liebeck, R.H.: Design of the blended-wing-body subsonic transport. In: Lecture Series on Innovative configurations and advanced concepts for future civil aircraft, Von Karman Institute, ISBN 2-930389-62-1, VKI 2005–06, (2005).Google Scholar
  4. 4.
    McMasters, J.H.: A U.S. perspective on future commercial airliner design. In: Lecture Series on Innovative configurations and advanced concepts for future civil aircraft, Von Karman Institute, ISBN 2-930389-62-1, VKI 2005–06, (2005).Google Scholar
  5. 5.
    Frediani, A.: The Prandtlwing. In: Lecture Series on Innovative configurations and advanced concepts for future civil aircraft, Von Karman Institute, ISBN 2-930389-62-1, VKI 2005-06, (2005).Google Scholar
  6. 6.
    Prandtl L.: Induced Drag of Multiplanes, NACA TN 182 (1924).Google Scholar
  7. 7.
    Frediani A., Montanari G., Pappalardo M.: Sul problema di Prandtl della Minima Resistenza Indotta di un Sistema Portante (in Italian), Proceedings of the 15th national Italian Conference AIDAA (1999).Google Scholar
  8. 8.
    A. Frediani, E. Rizzo, C. Bottoni. J. Scanu, G. Iezzi: A 250 Passenger PrandtlPlane Transport Aircraft Preliminary Design, Aerotecnica Missili e Spazio Vol. 84 4/2005 (2005).Google Scholar
  9. 9.
    Di Pillo G., Palagi L.: Nonlinear Programming: Introduction, Unconstrained and Constrained Optimization, Tech. Rep. 25–01, Dipartimento di Informatica e Sistemistica “A. Ruberti”, Universit di Roma “La Sapienza”. http://ftp.dis.uniroma1.it/PUB/OR/palagi/papers01/tr25-01.pdf (2001)
  10. 10.
    Mangasarian O. L.: Non Linear Programming, SIAM (1994).Google Scholar
  11. 11.
    Fletcher R.: Practical Methods of Optimization, Vol. 1 & 2, Wiley (1981).Google Scholar
  12. 12.
    Addis, B., Locatelli, M., Schoen, F.: Local Optima Smoothing for Global Optimization, Optimization Methods and Software, Taylor & Francis, Vol. 20, No. 4–5, August–October 2005 417–437 (2005).MATHMathSciNetGoogle Scholar
  13. 13.
    Addis, B., Leyffer, S.: A Trust-Region Algorithm for Global Optimization, Computational Optimization and Applications, Springer Netherlands, Vol. 35, No. 3 (2006).Google Scholar
  14. 14.
    Conn, A., Gould, N. I. M., Toint, P. L.: A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds SIAM J. NUMER. ANAL., Vol. 28, No. 2, 545–572 (1991).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lewis R. M., Torczon V.: A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds SIAM J. OPTIM., Vol. 12, No. 4, 1075–1089 (1998).MathSciNetGoogle Scholar
  16. 16.
    Drela M.: AVL (Athena Vortex Lattice).http://web.mit.edu/drela/Public/web/avl/ (2007)
  17. 17.
    Torczon V.: On the convergence of Pattern Search Algorithms SIAM J. OPTIM., Vol. 7, No. 1, 1–25 (1997).MATHMathSciNetGoogle Scholar
  18. 18.
    Audet, C., Dennis, J.E.: Mesh Adaptive Direct Search Algorithm for Constrained Optimization SIAM J. OPTIM., Vol. 17, No.1, 188–217 (2006).MATHMathSciNetGoogle Scholar
  19. 19.
    Ackley, D. H.: “A connectionist machine for genetic hill climbing”. Boston: Kluwer Academic Publishers, 1987.Google Scholar
  20. 20.
    Tüorn, A. and Zilinskas, A.: “Global Optimization”. Lecture Notes in Computer Science, N˚ 350, Springer-Verlag, Berlin,1989.Google Scholar
  21. 21.
    Müuhlenbein H., Schomisch D. and Born, J.: “The Parallel Genetic Algorithm as Function Optimizer” PARALLEL COMPUT. 17, 619–632 (1991).CrossRefGoogle Scholar
  22. 22.
    Schwefel, H.-P.: Numerical optimization of computer models. Chichester: Wiley & Sons, 1981.Google Scholar
  23. 23.
    Munk M.: Isoperimetrische Aufgaben aus der Theorie des Fluges, Inaugural Dissertation 1919, Gottinga (1919).Google Scholar
  24. 24.
    Munk M.: The minimum induced drag in airfoils, NACA 121(1924).Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria AerospazialeUniversità di Pisa, via Caruso56122 PisaItaly
  2. 2.Dipartimento di Ingegneria AerospazialeUniversità di Pisa, via Caruso56122 PisaItaly

Personalised recommendations