Skip to main content

Mercury emissions from global biomass burning: spatialand temporal distribution

  • Chapter
  • First Online:
Mercury Fate and Transport in the Global Atmosphere

Summary

This chapter represents a new addition to the UNEP global mercury budget: the mercury emissions from biomass burning, here defined as emissions from wildfires and prescribed burns, and excluding contributions from bio-fuel consumption and charcoal production and use. The results cover the 1997-2006 timeframe. The average annual global mercury emission estimate from biomass burning for 1997-2006 is 675 ± 240 Mg yr-1. This accounts for 8% of all current anthropogenic and natural emissions. The largest Hg emissions are from tropical and boreal Asia, followed by Africa and South America. They do not coincide with the largest carbon biomass burning emissions, which originate from Africa. Our methodology for budget estimation is based on a satellite-constrained bottom-up global carbon fire emission database (GFED version 2), which divides the globe into regions with similar ecosystems and burn behaviour. To estimate mercury emissions, the carbon model output is paired with regional emission factors for Hg, EF(Hg). There are large uncertainties in the budget estimation associated with burned area, fuel mass, and combustion completeness. The discrepancy between the model and traditional ground based assessments (e.g. FRA, 2000) is unacceptably large at this time. Of great urgency is the development and validation of a model for mercury cycling in forests, accounting for the biogeochemistry for each region. This would provide an understanding of the source/sink relationship and thus mercury accumulation or loss in ecosystems. Limiting the burning of tropical and boreal forests would have two beneficial effects: reducing the source of mercury releases to the atmosphere from burning, and maintaining a sink for atmospheric mercury. Restricting the global release mercury would reduce the vegetation/soil pools, and the potential Hg release in case of fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.6 References

  • Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Fannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L. and Hirsch, K. G., 2001. Direct carbon emissions from Canadian forest fires, 1959 – 1999. Can. J. For. Res. 31, 512–525.

    Article  CAS  Google Scholar 

  • Andreae, M.O. and Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cyc. 15 (4): 955–96.

    Article  CAS  Google Scholar 

  • Arellano, A.F., Kasibhatla, P.S., Giglio, L., van der Werf, G.R., Randerson, J.T. and Collatz, G.J., 2005. Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111, D09303, doi:10.1029/2005JD006613.

    Google Scholar 

  • Barbosa, P.M., Stroppiana, D., Grégoire, J.-M. and Pereira, J.M.C., 1999. An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cycles., 13(4), 933–950.

    Article  CAS  Google Scholar 

  • Berenfield, M.J., Randerson, J.T., McClain, C.R., Feldman, G.C., Los, S.O., Tucker, C.J., Falkowski, P.G., Field, C.B. and Frouin, R., 2001. Biosphere primary production during an ENSO transition, Science, 291 (5513), 2594–2597.

    Article  Google Scholar 

  • Bergamaschi, P., Hein, R., Heimann, M. and Crutzen, P.J., 2000. Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927.

    Article  CAS  Google Scholar 

  • Bishop, J.K.B. and Rosswo, W.B., 1991. Spatial and temporal variability of global surface solar irradiance, J. Geophys. Res., 96 (C9), 16839–16858.

    Article  Google Scholar 

  • Biswas, A., Blum J., Keeler, J., 2006. A comparison of methods to estimate mercury emissions during wildfire, 8th International Congress on Mercury as a Global Pollutant, T-125.

    Google Scholar 

  • Biswas, A., Blum J., Keeler, J., 2008. Mercury storage in a central Washington forest and release during the 2001 Rex Creel Fire. STOTEN-D-07-011986. In review

    Google Scholar 

  • Biswas, A., Blum, J.D., Klaue, B., Keeler, G.J., 2007. Release of mercury from Rocky Mountain forest fires. Global Biogeochem. Cycles, 21, GB1002; doi:10.1029/2006GB002696.

    Article  CAS  Google Scholar 

  • Brunke, E.-G., Labuschagne, C. and Slemr, F. Gaseous mercury emissions from a fire in the Cape Peninsula, South Africa, during January 2000, Geophys. Res. Lett., 28, 1483–1486, 2001.

    Article  CAS  Google Scholar 

  • Carvalho, J.J., Costa, F.S., Gurgel Veras, C.A., Sandberg, D.V., Alvarado, E.C., Serra, A.M. and Santos, J.M. Biomass fire consumption and carbon release rates of rainforest-clearing experimens conducted in northern Mato Grosso, Brazil, J. Geophys. Res., 106(16), 17877–17887, 2001.

    Article  CAS  Google Scholar 

  • Cinnirella, S. and Pirrone, N. Spatial and temporal distribution of mercury emissions from forest fires in Mediterranean region and Russian federation. Atmos. Environ., 40, 7346–7361, 2006.

    Article  CAS  Google Scholar 

  • Cinnirella, S., Pirrone, N., Allegrini, A., Guglietta, D., 2008. Modeling mercury emissions from forest fires in the Mediterranean region, Environmental Fluid Mechanics, 8: 129–145.

    Article  CAS  Google Scholar 

  • Conard, S.G. and Davidenko, E.P. Fire in Siberian Forests- Implications for global Climate and Air Quality. USDA Forest Service Gen. Tech. Rep.PSW-GTR-166, 87-94, 1996.

    Google Scholar 

  • Driscoll, C., Bushey, J T., Nallana, A.G., Selvendiran, P., Choi, H.-Y. and Holsen T.M. Atmosphere-Land Dynamics of Mercury in a Forest Landscape of the Adirondack Region Page of New York, http://nadp.sws.uiuc.edu/meetings/fall2007/post/6-mercury/driscoll.pdf

  • Duncan, B.N., Martin, R.V., Staudt, A.C., Yevich, R. and Logan, J.L. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res., 108(D2), 4100, doi:10.1029/2002JD002378, 2003.

    Article  CAS  Google Scholar 

  • Ebinghaus, R., Slemr, F., Brenninkmeijer, C.A.M., vanVelthoven, P., Zahn, A., Hermann, M., Sullivan, D.A. and Oram, D.E. Emission of gaseous mercury from biomass burning in South America in 2005 observed during CARIBIC flights, Geophys. Res. Lett., 34, L08813; doi:10.1029/2006GL028866, 2007.

    Article  CAS  Google Scholar 

  • Engle, M.A., Sexauer Gustin, M., Johnson, D.W., Murphy, J.F., Miller, W.W., Walker, R.F., Wright, J., Markee, M. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire, Science of the Total Environment, 367, 222–233, 2006.

    Article  CAS  Google Scholar 

  • Erickson, J.A., Gustin, M.S., Schorran, D.E., Johnson, D.W., Lindberg, S.E. and Coleman, J.S. Accumulation of atmospheric mercury in forest foliage, Atmos. Environ., 37, 1613–1622, 2003.

    Article  CAS  Google Scholar 

  • Fay, L. and Gustin, M. Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment, Water, Air and Soil Poll. 181, 373–384, 2007, doi10.1007/s11270-006-9308-6.

    Article  CAS  Google Scholar 

  • French, N.H.F., Goovaerts, P., Kasischke, E. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res., 109, D14S08; doi:10.1029/2003JD003635, 2004.

    Article  CAS  Google Scholar 

  • Frescholtz, T.F., Gustin, M.S., Schorran, D.E. and Fernandez, G.C.J. Assessing the source of mercury in foliar tissue of quaking aspen, Environ. Toxicol. Chem., 22(9), 2114–2119, 2003.

    Article  CAS  Google Scholar 

  • Friedli, H.R., Radke, L.F., Payne, N.J., McRae, D.J., Lynham, T.J. and Blake, T.W. Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. J. Geophys. Res., 112, G01004; doi:10.1029/2005JG000061, 2007.

    Article  CAS  Google Scholar 

  • Friedli, H.R., Radke, L.F., Lu, J.Y., Banic, C.M., Leaitch, W.R. and MacPherson, J.I. Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements, Atmos. Environ., 37, 253–267, 2003a.

    Article  CAS  Google Scholar 

  • Friedli, H.R., Radke, L.F., Prescott, R., Hobbs, P.V. and Sinha, P. Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon, and atmospheric mercury budget estimates, Global Biogeochem. Cycles, 17(2), 1039, doi:10.1029/2002GB001972, 2003b.

    Article  CAS  Google Scholar 

  • Friedli, H.R., Radke, L.F., Lu, J.Y. Mercury in smoke from biomass fires. Geophys. Res. Lett. 28 (17), 3223–3226, 2001.

    Article  CAS  Google Scholar 

  • Friedli, H.R. et al. Mercury emissions from experimental burns of Southern African vegetation, unpublished MS, 2008.

    Google Scholar 

  • Fromm, M.D. and Servranckx, R. Transport of forest fire smoke above the tropopause by supercell convection, Geophys. Res. Lett., 30(10), 1542, doi:10.1029/2002GL016820, 2003.

    Article  Google Scholar 

  • Giglio, L., van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J. and Kasibhatla, P.S. Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957–974, 2006.

    CAS  Google Scholar 

  • Grégoire, J.-M., Tansey, K. and Silva, J.M.N. The GBA2000 initiative: Developing a global burned area database from SPOT-VEGETATION imagery, Int. J. Remote Sensing, 24(6), 1369–1376, 2002.

    Google Scholar 

  • Grigal, D.F. Mercury sequestration in forests and peatlands: A review. J. Environ. Qual., 32, 393–405, 2003.

    CAS  Google Scholar 

  • Grigal, D.F. Inputs and output of mercury from terrestrial watersheds: a review. Environ. Rev. 10, 1–39, 2002.

    Article  CAS  Google Scholar 

  • Guild, L.S., Kauffman, J.B., Ellingson, L.J., Cummings, D.L., Castro, E.A., Babbitt, R.E. and Ward, D.E. Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondonia, Brazil during SCAR-B, J. Geophys. Res., 103 (D24), 32091–32100, 1998.

    Article  Google Scholar 

  • Gustin, M.S., Lindberg, S.E., Wesiberg, P. An update of our understanding of the role of sources and sinks of the biogeochemical cycle of mercury, 2008, Applied Geochemistry, in press

    Google Scholar 

  • Hao, W.M. and Liu, M.H. Spatial and temporal distribution of tropical biomass burning, Global Biogeochem. Cyc., 8(4), 495–503, 1994.

    Article  CAS  Google Scholar 

  • Harden, J.W., Neff, J.C., Sandberg, D.V., Turetsky, M.R., Ottmar, R., Gleixner, G., Fries, T.L. and Manies, K.L. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska,1999. Global Biogeochem. Cycles, 18, GB3014; doi: 10.1029/2003GB002194, 2004.

    Article  CAS  Google Scholar 

  • Harris, R.C. et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition.www.pnas.org/doi:10.1073/pnas.0704186104, 2007

  • Hēly, C., Alleaume, S., Swap, R.J., Shugart, H.H. and Justices, C.O. SAFARI-2000 characteristics of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia, J. Arid Environ, 54, 381–394, 2003.

    Article  Google Scholar 

  • Hobbs, P.V., Reid, J.S., Herring, J.A., Nance, J.D., Weiss, R.E., Ross, J.L., Hegg, D.A., Ottmar, R.D. and Liousse, C. Particles and trace gas measurements in smoke from prescribed burns of forest products in the Pacific Northwest, in Biomass Burning and Global Change, vol 1, edited by J.S. Levine, pp. 697–715, MIT Press, Cambridge, Mass., 1996.

    Google Scholar 

  • Hoelzemann, J.J., Schultz, M.G., Brasseur, G.P., Granier, C. and Simon, M. Global Wildland Fire Emissions Model (GWEM): Evaluating the use of global area burnt satellite data, J. Geophys. Res., 109(D14S04), doi:10.1029/2003JD003666, 2004.

    CAS  Google Scholar 

  • Hoffa, E.A., Ward, D.E., Olbu, G.J. and Baker, S.P. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems, J. Geophys. Res., 104(D11), 13841–13853, 1999.

    Article  CAS  Google Scholar 

  • Ito, A. and Penner, J.E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res., 109, D14S05, doi:10.1029/2003JD004423, 2004.

    Article  CAS  Google Scholar 

  • Jain, A.K., Tao, Z., Yang, X. and Gillespie, C. Estimates of global biomass burning for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2, J. Geophys. Res., 111(D06304), doi:10.1029/2005JD006237, 2006.

    CAS  Google Scholar 

  • Kasischke, E.S., Hyer, E.J., Novelli, P.C., Bruhwiler, L.P., French, N.J.F., Sukhinin, A.I., Hewson, J.H. and Stocks, B.J. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cyc., 19, GB1012, doi:10.1029/2004GB002300, 2005.

    Google Scholar 

  • Kasischke, E.S. and Bruhwiler, L. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998, J. Geophys. Res., 108 (D1), 8146, doi:10.1029/ 2001JD000461, 2002.

    Article  CAS  Google Scholar 

  • Kasischke, E.S. and Penner, J.E. Improving global emissions of atmospheric emissions form biomass burning, J. Geophys. Res., 109 (D14S01), doi:10.1029/2004JD004972, 2004.

    CAS  Google Scholar 

  • Lavoué, D., Liousse, C., Cachier, H., Stocks, B.J., and Goldammer, J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26871–26890, 2000.

    Article  Google Scholar 

  • Lindberg, S.E. Forests and the global biogeochemical cycle of mercury, in Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, NATO-ASI Ser., vol. 21, edited by W. Baeyens, et al., pp. 359–380, Springer, New York, 1996.

    Google Scholar 

  • Michelazzo, P.A.M; Fostier, A.H; Magarell, G., Santos, J.C., Carvalho, J.A. Jr. Mercury emissions from forest burning in the region of Alta Floresta. Submitted to Sci. Tot. Environ., 2008.

    Google Scholar 

  • Müller, J-F. and Stavrakou, T. Inversion of CO and NOx emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, 2005.

    Google Scholar 

  • Obrist, D., Moosmueller, H., Schuermann, R., Antony Chen, L.-w, and Kreidenweis, S.M. Particulate_Phase and Gaseous Elementary Mercury Speciation in Biomass Combustion: Controlling Factors and Correlation with Particulate Matter Emission. Environ. Sci. Technol., 10.1021/es071279n, 2007.

    Google Scholar 

  • Pétron, G., Grainer, C., Khattatov, B., Yudin, V., Lamarque, J-F., Emmons, L., Gille, J. and Edwards, D.P. Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data, Geophys. Res. Lett., 31, L21107, doi:10.1029/2004GL020560, 2004.

    Article  CAS  Google Scholar 

  • Pfister, G., Emmons, L.K., Hess, P.G., Honrath, R.E., Lamarque, J.-F., ValMartin, M., Owen, R.C., Avery, M., Browell, E., Holloway, J., Nedelec, P., Purvis, R., Ryerson, T., Sachse, G., and Schlager, H. (2006), Ozone Production from the 2004 North American Boreal Fires, J. Geophys. Res., 111, D24S07, doi:10.1029/2006JD007695.

    Article  CAS  Google Scholar 

  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. Terrestial Ecosystem Production – A process model based on global satellite and surface data, Global Biogeochem. Cycles. 7(4), 811–841, 1993.

    Article  Google Scholar 

  • Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.G., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R., Chapin, F.S., Harden, J.W., Goulden, M.L., Lyons, E., Neff, J.C., Schuur, E.A.G., and Zender, C.S. The impact of boreal forest fire on climate warming, Science. 314, 1130–1132. 2006.

    Article  CAS  Google Scholar 

  • Roberts, G. and Wooster, M.J. New perspectives on African biomass burning dynamics. EOS, 88 (18), 369–370, 2007.

    Article  Google Scholar 

  • Streets, D.G., Yarber, K.F., Woo, J-H., Carmichael, G.R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem. Cycles. 17(4) 1099, 2003.

    Article  CAS  Google Scholar 

  • Streets, D.G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., Feng, X. Anthropogenic mercury emissions in China. Atmos. Environ. 39, 7789–7806, 2005.

    Article  CAS  Google Scholar 

  • Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., Scott, C. Global source attribution for mercury deposition in the United States, Environ. Sci. Technol., 38, 555–569, 2004.

    Article  CAS  Google Scholar 

  • Seiler, W. and Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change, 2(3), 207–247, 1980.

    Article  CAS  Google Scholar 

  • Shea, R.W., Shea, B.W., Kauffman, J.B., Ward, D.E., Haskins, C.I. and Scholes, M.C. Fuel biomass and combustion factors associated with fires in savanna ecosystem of South Africa and Zambia, J. Geophys. Res., 101 (D19), 23551–23568, 1996.

    Article  Google Scholar 

  • Sigler, J.M., Lee, X. and Munger, W. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ. Sci. Technol., 37, 4343–4347, 2003.

    Article  CAS  Google Scholar 

  • Simon, M.S., Plummer, S., Fierens, F., Hoelzemann, J.J. and Arino, O. Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification, J. Geophys. Res., 109 (D14S02), doi:10.1029/2003JD003622, 2004.

    Google Scholar 

  • Skyllberg, U., Qian, J., Frech, W., Xia, K., and Bleam, W.F. Distribution of mercury, methyl mercury and organic sulfur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76, 2003.

    Article  CAS  Google Scholar 

  • St. Louis, V.L., Rudd, W.M., Kelly, C.A., Hall, B.D. Rolfhus, K.R., Scott, K.J., Lindberg, S.E. and Dong, W. Importance of the forest canopy to fluxes of methyl mercury and total mercury to a boreal ecosystem, Environ. Sci. Technol., 35, 3089–3098, 2001.

    Article  CAS  Google Scholar 

  • Sukhinin, A.I., French, N.H.F., Kasischke, E.S., Hewson, J.H., Soja, A.J., Csiszar, I.A., Hyer, E.J., Loboda, T., Conrad, S.G., Romasko, V.I., Pavlichenko, E.A., Miskiv, S.I. and Slinkina, O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies, Rem. Sens. Environ., 96(2), 188–201, 2004.

    Google Scholar 

  • Turetsky, M.R., Harden, J.W., Friedli, H.R., Flannigan, M., Payne, N., Crook, J., Radke, L.F. Wildfires threaten mercury stocks in northern soils. Geophy. Res. Lett., 33, L16403, doi:10.1029/2005GL025595, 2006.

    Article  Google Scholar 

  • van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S. and Arellano, A. Interannual variability in biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, 2006.

    Article  CAS  Google Scholar 

  • van der Werf, G.R., Randerson, J.T., Collatz, G.J. and Giglio, L. Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Bio., 9(4), 547–562, 2003.

    Article  Google Scholar 

  • Veiga, M.M., Meech, J.A. and Ornante, N. Mercury pollution from Deforestation. Nature, 368, 816–817, 1994.

    Article  CAS  Google Scholar 

  • Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., O'Neill, S. and Wynne, K.K. Estimating emissions from fires in North America for Air Quality Modeling, Atmos. Environ., 40, 3419–3432, 2006.

    Article  CAS  Google Scholar 

  • Wiedinmyer, C. and Friedli, H. Mercury emission estimates from fires: An initial inventory for the United States, Environ. Sci. Technol., 41, 8092–8098, 2007.

    Article  CAS  Google Scholar 

  • Weiss-Penzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D. and Prestbo, E. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory, Atmos. Environ., 41, 4366–4379, 2007.

    Article  CAS  Google Scholar 

  • Witham, C. and Manning, A. Impact of Russian biomass burning on UK air quality, Atmos. Environ. 41, 8075–8090, 2007.

    Article  CAS  Google Scholar 

  • Woodruff, L.G., Harden, J.W., Cannon, W.F., Gough, L.P., 2001. Mercury loss from the forest floor during wildland fire. American Geophysical Union, Fall meeting, abstract # B32B-0117.

    Google Scholar 

  • Yan, X., Ohara, T. and Akimoto, H., 2006. Bottom-up estimate of biomass burning in mainland China, Atmos. Environ., 40, 5262–5273.

    Article  CAS  Google Scholar 

Download references

8.5 Acknowledgments

We would like to thank James T. Randerson of University of California, Irvine, Guido R. van der Werf of Vrije Universiteit Amsterdam, Louis Giglio of Science Systems and Applications, Inc., Maryland, G. James Collatz of NASA Goddard Space Flight Center, Maryland and Prasad S. Kasibhatla of Duke University for GFEDv2 emission data and Christine Wiedinmyer and Gabriele Pfister for valuable reviews of the manuscript. H. Friedli and A. Arellano are funded by the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. Nicola Pirrone and Sergio Cinnirella would like to acknowledge the contribution of the Ministry of Environment for its support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Friedli, H.R., Arellano, A.F., Cinnirella, S., Pirrone, N. (2009). Mercury emissions from global biomass burning: spatialand temporal distribution. In: Mason, R., Pirrone, N. (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93958-2_8

Download citation

Publish with us

Policies and ethics