Advertisement

Mercury emissions from global biomass burning: spatialand temporal distribution

  • Hans R. Friedli
  • Avelino F. ArellanoJr
  • Sergio Cinnirella
  • Nicola Pirrone
Chapter

Summary

This chapter represents a new addition to the UNEP global mercury budget: the mercury emissions from biomass burning, here defined as emissions from wildfires and prescribed burns, and excluding contributions from bio-fuel consumption and charcoal production and use. The results cover the 1997-2006 timeframe. The average annual global mercury emission estimate from biomass burning for 1997-2006 is 675 ± 240 Mg yr-1. This accounts for 8% of all current anthropogenic and natural emissions. The largest Hg emissions are from tropical and boreal Asia, followed by Africa and South America. They do not coincide with the largest carbon biomass burning emissions, which originate from Africa. Our methodology for budget estimation is based on a satellite-constrained bottom-up global carbon fire emission database (GFED version 2), which divides the globe into regions with similar ecosystems and burn behaviour. To estimate mercury emissions, the carbon model output is paired with regional emission factors for Hg, EF(Hg). There are large uncertainties in the budget estimation associated with burned area, fuel mass, and combustion completeness. The discrepancy between the model and traditional ground based assessments (e.g. FRA, 2000) is unacceptably large at this time. Of great urgency is the development and validation of a model for mercury cycling in forests, accounting for the biogeochemistry for each region. This would provide an understanding of the source/sink relationship and thus mercury accumulation or loss in ecosystems. Limiting the burning of tropical and boreal forests would have two beneficial effects: reducing the source of mercury releases to the atmosphere from burning, and maintaining a sink for atmospheric mercury. Restricting the global release mercury would reduce the vegetation/soil pools, and the potential Hg release in case of fire.

Keywords

Carbon Emission Emission Factor Biomass Burning Burned Area Fuel Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

8.5 Acknowledgments

We would like to thank James T. Randerson of University of California, Irvine, Guido R. van der Werf of Vrije Universiteit Amsterdam, Louis Giglio of Science Systems and Applications, Inc., Maryland, G. James Collatz of NASA Goddard Space Flight Center, Maryland and Prasad S. Kasibhatla of Duke University for GFEDv2 emission data and Christine Wiedinmyer and Gabriele Pfister for valuable reviews of the manuscript. H. Friedli and A. Arellano are funded by the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. Nicola Pirrone and Sergio Cinnirella would like to acknowledge the contribution of the Ministry of Environment for its support.

8.6 References

  1. Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Fannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L. and Hirsch, K. G., 2001. Direct carbon emissions from Canadian forest fires, 1959 – 1999. Can. J. For. Res. 31, 512–525.CrossRefGoogle Scholar
  2. Andreae, M.O. and Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cyc. 15 (4): 955–96.CrossRefGoogle Scholar
  3. Arellano, A.F., Kasibhatla, P.S., Giglio, L., van der Werf, G.R., Randerson, J.T. and Collatz, G.J., 2005. Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111, D09303, doi:10.1029/2005JD006613. Google Scholar
  4. Barbosa, P.M., Stroppiana, D., Grégoire, J.-M. and Pereira, J.M.C., 1999. An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cycles., 13(4), 933–950.CrossRefGoogle Scholar
  5. Berenfield, M.J., Randerson, J.T., McClain, C.R., Feldman, G.C., Los, S.O., Tucker, C.J., Falkowski, P.G., Field, C.B. and Frouin, R., 2001. Biosphere primary production during an ENSO transition, Science, 291 (5513), 2594–2597.CrossRefGoogle Scholar
  6. Bergamaschi, P., Hein, R., Heimann, M. and Crutzen, P.J., 2000. Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927.CrossRefGoogle Scholar
  7. Bishop, J.K.B. and Rosswo, W.B., 1991. Spatial and temporal variability of global surface solar irradiance, J. Geophys. Res., 96 (C9), 16839–16858.CrossRefGoogle Scholar
  8. Biswas, A., Blum J., Keeler, J., 2006. A comparison of methods to estimate mercury emissions during wildfire, 8th International Congress on Mercury as a Global Pollutant, T-125. Google Scholar
  9. Biswas, A., Blum J., Keeler, J., 2008. Mercury storage in a central Washington forest and release during the 2001 Rex Creel Fire. STOTEN-D-07-011986. In review Google Scholar
  10. Biswas, A., Blum, J.D., Klaue, B., Keeler, G.J., 2007. Release of mercury from Rocky Mountain forest fires. Global Biogeochem. Cycles, 21, GB1002; doi:10.1029/2006GB002696. CrossRefGoogle Scholar
  11. Brunke, E.-G., Labuschagne, C. and Slemr, F. Gaseous mercury emissions from a fire in the Cape Peninsula, South Africa, during January 2000, Geophys. Res. Lett., 28, 1483–1486, 2001.CrossRefGoogle Scholar
  12. Carvalho, J.J., Costa, F.S., Gurgel Veras, C.A., Sandberg, D.V., Alvarado, E.C., Serra, A.M. and Santos, J.M. Biomass fire consumption and carbon release rates of rainforest-clearing experimens conducted in northern Mato Grosso, Brazil, J. Geophys. Res., 106(16), 17877–17887, 2001.CrossRefGoogle Scholar
  13. Cinnirella, S. and Pirrone, N. Spatial and temporal distribution of mercury emissions from forest fires in Mediterranean region and Russian federation. Atmos. Environ., 40, 7346–7361, 2006.CrossRefGoogle Scholar
  14. Cinnirella, S., Pirrone, N., Allegrini, A., Guglietta, D., 2008. Modeling mercury emissions from forest fires in the Mediterranean region, Environmental Fluid Mechanics, 8: 129–145. CrossRefGoogle Scholar
  15. Conard, S.G. and Davidenko, E.P. Fire in Siberian Forests- Implications for global Climate and Air Quality. USDA Forest Service Gen. Tech. Rep.PSW-GTR-166, 87-94, 1996. Google Scholar
  16. Driscoll, C., Bushey, J T., Nallana, A.G., Selvendiran, P., Choi, H.-Y. and Holsen T.M. Atmosphere-Land Dynamics of Mercury in a Forest Landscape of the Adirondack Region Page of New York, http://nadp.sws.uiuc.edu/meetings/fall2007/post/6-mercury/driscoll.pdf
  17. Duncan, B.N., Martin, R.V., Staudt, A.C., Yevich, R. and Logan, J.L. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res., 108(D2), 4100, doi:10.1029/2002JD002378, 2003.CrossRefGoogle Scholar
  18. Ebinghaus, R., Slemr, F., Brenninkmeijer, C.A.M., vanVelthoven, P., Zahn, A., Hermann, M., Sullivan, D.A. and Oram, D.E. Emission of gaseous mercury from biomass burning in South America in 2005 observed during CARIBIC flights, Geophys. Res. Lett., 34, L08813; doi:10.1029/2006GL028866, 2007.CrossRefGoogle Scholar
  19. Engle, M.A., Sexauer Gustin, M., Johnson, D.W., Murphy, J.F., Miller, W.W., Walker, R.F., Wright, J., Markee, M. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire, Science of the Total Environment, 367, 222–233, 2006. CrossRefGoogle Scholar
  20. Erickson, J.A., Gustin, M.S., Schorran, D.E., Johnson, D.W., Lindberg, S.E. and Coleman, J.S. Accumulation of atmospheric mercury in forest foliage, Atmos. Environ., 37, 1613–1622, 2003.CrossRefGoogle Scholar
  21. Fay, L. and Gustin, M. Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment, Water, Air and Soil Poll. 181, 373–384, 2007, doi10.1007/s11270-006-9308-6. CrossRefGoogle Scholar
  22. French, N.H.F., Goovaerts, P., Kasischke, E. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res., 109, D14S08; doi:10.1029/2003JD003635, 2004.CrossRefGoogle Scholar
  23. Frescholtz, T.F., Gustin, M.S., Schorran, D.E. and Fernandez, G.C.J. Assessing the source of mercury in foliar tissue of quaking aspen, Environ. Toxicol. Chem., 22(9), 2114–2119, 2003.CrossRefGoogle Scholar
  24. Friedli, H.R., Radke, L.F., Payne, N.J., McRae, D.J., Lynham, T.J. and Blake, T.W. Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. J. Geophys. Res., 112, G01004; doi:10.1029/2005JG000061, 2007. CrossRefGoogle Scholar
  25. Friedli, H.R., Radke, L.F., Lu, J.Y., Banic, C.M., Leaitch, W.R. and MacPherson, J.I. Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements, Atmos. Environ., 37, 253–267, 2003a.CrossRefGoogle Scholar
  26. Friedli, H.R., Radke, L.F., Prescott, R., Hobbs, P.V. and Sinha, P. Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon, and atmospheric mercury budget estimates, Global Biogeochem. Cycles, 17(2), 1039, doi:10.1029/2002GB001972, 2003b.CrossRefGoogle Scholar
  27. Friedli, H.R., Radke, L.F., Lu, J.Y. Mercury in smoke from biomass fires. Geophys. Res. Lett. 28 (17), 3223–3226, 2001.CrossRefGoogle Scholar
  28. Friedli, H.R. et al. Mercury emissions from experimental burns of Southern African vegetation, unpublished MS, 2008. Google Scholar
  29. Fromm, M.D. and Servranckx, R. Transport of forest fire smoke above the tropopause by supercell convection, Geophys. Res. Lett., 30(10), 1542, doi:10.1029/2002GL016820, 2003.CrossRefGoogle Scholar
  30. Giglio, L., van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J. and Kasibhatla, P.S. Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957–974, 2006.Google Scholar
  31. Grégoire, J.-M., Tansey, K. and Silva, J.M.N. The GBA2000 initiative: Developing a global burned area database from SPOT-VEGETATION imagery, Int. J. Remote Sensing, 24(6), 1369–1376, 2002.Google Scholar
  32. Grigal, D.F. Mercury sequestration in forests and peatlands: A review. J. Environ. Qual., 32, 393–405, 2003.Google Scholar
  33. Grigal, D.F. Inputs and output of mercury from terrestrial watersheds: a review. Environ. Rev. 10, 1–39, 2002.CrossRefGoogle Scholar
  34. Guild, L.S., Kauffman, J.B., Ellingson, L.J., Cummings, D.L., Castro, E.A., Babbitt, R.E. and Ward, D.E. Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondonia, Brazil during SCAR-B, J. Geophys. Res., 103 (D24), 32091–32100, 1998.CrossRefGoogle Scholar
  35. Gustin, M.S., Lindberg, S.E., Wesiberg, P. An update of our understanding of the role of sources and sinks of the biogeochemical cycle of mercury, 2008, Applied Geochemistry, in press Google Scholar
  36. Hao, W.M. and Liu, M.H. Spatial and temporal distribution of tropical biomass burning, Global Biogeochem. Cyc., 8(4), 495–503, 1994.CrossRefGoogle Scholar
  37. Harden, J.W., Neff, J.C., Sandberg, D.V., Turetsky, M.R., Ottmar, R., Gleixner, G., Fries, T.L. and Manies, K.L. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska,1999. Global Biogeochem. Cycles, 18, GB3014; doi: 10.1029/2003GB002194, 2004.CrossRefGoogle Scholar
  38. Harris, R.C. et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition.www.pnas.org/doi:10.1073/pnas.0704186104, 2007
  39. Hēly, C., Alleaume, S., Swap, R.J., Shugart, H.H. and Justices, C.O. SAFARI-2000 characteristics of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia, J. Arid Environ, 54, 381–394, 2003.CrossRefGoogle Scholar
  40. Hobbs, P.V., Reid, J.S., Herring, J.A., Nance, J.D., Weiss, R.E., Ross, J.L., Hegg, D.A., Ottmar, R.D. and Liousse, C. Particles and trace gas measurements in smoke from prescribed burns of forest products in the Pacific Northwest, in Biomass Burning and Global Change, vol 1, edited by J.S. Levine, pp. 697–715, MIT Press, Cambridge, Mass., 1996.Google Scholar
  41. Hoelzemann, J.J., Schultz, M.G., Brasseur, G.P., Granier, C. and Simon, M. Global Wildland Fire Emissions Model (GWEM): Evaluating the use of global area burnt satellite data, J. Geophys. Res., 109(D14S04), doi:10.1029/2003JD003666, 2004.Google Scholar
  42. Hoffa, E.A., Ward, D.E., Olbu, G.J. and Baker, S.P. Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems, J. Geophys. Res., 104(D11), 13841–13853, 1999.CrossRefGoogle Scholar
  43. Ito, A. and Penner, J.E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res., 109, D14S05, doi:10.1029/2003JD004423, 2004.CrossRefGoogle Scholar
  44. Jain, A.K., Tao, Z., Yang, X. and Gillespie, C. Estimates of global biomass burning for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2, J. Geophys. Res., 111(D06304), doi:10.1029/2005JD006237, 2006.Google Scholar
  45. Kasischke, E.S., Hyer, E.J., Novelli, P.C., Bruhwiler, L.P., French, N.J.F., Sukhinin, A.I., Hewson, J.H. and Stocks, B.J. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cyc., 19, GB1012, doi:10.1029/2004GB002300, 2005.Google Scholar
  46. Kasischke, E.S. and Bruhwiler, L. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998, J. Geophys. Res., 108 (D1), 8146, doi:10.1029/ 2001JD000461, 2002.CrossRefGoogle Scholar
  47. Kasischke, E.S. and Penner, J.E. Improving global emissions of atmospheric emissions form biomass burning, J. Geophys. Res., 109 (D14S01), doi:10.1029/2004JD004972, 2004.Google Scholar
  48. Lavoué, D., Liousse, C., Cachier, H., Stocks, B.J., and Goldammer, J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26871–26890, 2000.CrossRefGoogle Scholar
  49. Lindberg, S.E. Forests and the global biogeochemical cycle of mercury, in Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, NATO-ASI Ser., vol. 21, edited by W. Baeyens, et al., pp. 359–380, Springer, New York, 1996.Google Scholar
  50. Michelazzo, P.A.M; Fostier, A.H; Magarell, G., Santos, J.C., Carvalho, J.A. Jr. Mercury emissions from forest burning in the region of Alta Floresta. Submitted to Sci. Tot. Environ., 2008. Google Scholar
  51. Müller, J-F. and Stavrakou, T. Inversion of CO and NOx emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, 2005.Google Scholar
  52. Obrist, D., Moosmueller, H., Schuermann, R., Antony Chen, L.-w, and Kreidenweis, S.M. Particulate_Phase and Gaseous Elementary Mercury Speciation in Biomass Combustion: Controlling Factors and Correlation with Particulate Matter Emission. Environ. Sci. Technol., 10.1021/es071279n, 2007. Google Scholar
  53. Pétron, G., Grainer, C., Khattatov, B., Yudin, V., Lamarque, J-F., Emmons, L., Gille, J. and Edwards, D.P. Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data, Geophys. Res. Lett., 31, L21107, doi:10.1029/2004GL020560, 2004.CrossRefGoogle Scholar
  54. Pfister, G., Emmons, L.K., Hess, P.G., Honrath, R.E., Lamarque, J.-F., ValMartin, M., Owen, R.C., Avery, M., Browell, E., Holloway, J., Nedelec, P., Purvis, R., Ryerson, T., Sachse, G., and Schlager, H. (2006), Ozone Production from the 2004 North American Boreal Fires, J. Geophys. Res., 111, D24S07, doi:10.1029/2006JD007695.CrossRefGoogle Scholar
  55. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. Terrestial Ecosystem Production – A process model based on global satellite and surface data, Global Biogeochem. Cycles. 7(4), 811–841, 1993.CrossRefGoogle Scholar
  56. Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.G., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R., Chapin, F.S., Harden, J.W., Goulden, M.L., Lyons, E., Neff, J.C., Schuur, E.A.G., and Zender, C.S. The impact of boreal forest fire on climate warming, Science. 314, 1130–1132. 2006.CrossRefGoogle Scholar
  57. Roberts, G. and Wooster, M.J. New perspectives on African biomass burning dynamics. EOS, 88 (18), 369–370, 2007.CrossRefGoogle Scholar
  58. Streets, D.G., Yarber, K.F., Woo, J-H., Carmichael, G.R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochem. Cycles. 17(4) 1099, 2003.CrossRefGoogle Scholar
  59. Streets, D.G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., Feng, X. Anthropogenic mercury emissions in China. Atmos. Environ. 39, 7789–7806, 2005.CrossRefGoogle Scholar
  60. Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., Scott, C. Global source attribution for mercury deposition in the United States, Environ. Sci. Technol., 38, 555–569, 2004. CrossRefGoogle Scholar
  61. Seiler, W. and Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change, 2(3), 207–247, 1980.CrossRefGoogle Scholar
  62. Shea, R.W., Shea, B.W., Kauffman, J.B., Ward, D.E., Haskins, C.I. and Scholes, M.C. Fuel biomass and combustion factors associated with fires in savanna ecosystem of South Africa and Zambia, J. Geophys. Res., 101 (D19), 23551–23568, 1996.CrossRefGoogle Scholar
  63. Sigler, J.M., Lee, X. and Munger, W. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ. Sci. Technol., 37, 4343–4347, 2003.CrossRefGoogle Scholar
  64. Simon, M.S., Plummer, S., Fierens, F., Hoelzemann, J.J. and Arino, O. Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification, J. Geophys. Res., 109 (D14S02), doi:10.1029/2003JD003622, 2004. Google Scholar
  65. Skyllberg, U., Qian, J., Frech, W., Xia, K., and Bleam, W.F. Distribution of mercury, methyl mercury and organic sulfur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76, 2003.CrossRefGoogle Scholar
  66. St. Louis, V.L., Rudd, W.M., Kelly, C.A., Hall, B.D. Rolfhus, K.R., Scott, K.J., Lindberg, S.E. and Dong, W. Importance of the forest canopy to fluxes of methyl mercury and total mercury to a boreal ecosystem, Environ. Sci. Technol., 35, 3089–3098, 2001.CrossRefGoogle Scholar
  67. Sukhinin, A.I., French, N.H.F., Kasischke, E.S., Hewson, J.H., Soja, A.J., Csiszar, I.A., Hyer, E.J., Loboda, T., Conrad, S.G., Romasko, V.I., Pavlichenko, E.A., Miskiv, S.I. and Slinkina, O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies, Rem. Sens. Environ., 96(2), 188–201, 2004.Google Scholar
  68. Turetsky, M.R., Harden, J.W., Friedli, H.R., Flannigan, M., Payne, N., Crook, J., Radke, L.F. Wildfires threaten mercury stocks in northern soils. Geophy. Res. Lett., 33, L16403, doi:10.1029/2005GL025595, 2006.CrossRefGoogle Scholar
  69. van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S. and Arellano, A. Interannual variability in biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, 2006.CrossRefGoogle Scholar
  70. van der Werf, G.R., Randerson, J.T., Collatz, G.J. and Giglio, L. Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Bio., 9(4), 547–562, 2003.CrossRefGoogle Scholar
  71. Veiga, M.M., Meech, J.A. and Ornante, N. Mercury pollution from Deforestation. Nature, 368, 816–817, 1994.CrossRefGoogle Scholar
  72. Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., O'Neill, S. and Wynne, K.K. Estimating emissions from fires in North America for Air Quality Modeling, Atmos. Environ., 40, 3419–3432, 2006.CrossRefGoogle Scholar
  73. Wiedinmyer, C. and Friedli, H. Mercury emission estimates from fires: An initial inventory for the United States, Environ. Sci. Technol., 41, 8092–8098, 2007.CrossRefGoogle Scholar
  74. Weiss-Penzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D. and Prestbo, E. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory, Atmos. Environ., 41, 4366–4379, 2007.CrossRefGoogle Scholar
  75. Witham, C. and Manning, A. Impact of Russian biomass burning on UK air quality, Atmos. Environ. 41, 8075–8090, 2007.CrossRefGoogle Scholar
  76. Woodruff, L.G., Harden, J.W., Cannon, W.F., Gough, L.P., 2001. Mercury loss from the forest floor during wildland fire. American Geophysical Union, Fall meeting, abstract # B32B-0117. Google Scholar
  77. Yan, X., Ohara, T. and Akimoto, H., 2006. Bottom-up estimate of biomass burning in mainland China, Atmos. Environ., 40, 5262–5273.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Hans R. Friedli
    • 1
  • Avelino F. ArellanoJr
    • 1
  • Sergio Cinnirella
    • 2
  • Nicola Pirrone
    • 3
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.CNR-Institute for Atmospheric Pollution, Division of RendeRendeItaly
  3. 3.CNR-Institute for Atmospheric PollutionRomeItaly

Personalised recommendations