Mercury emissions from natural processes and their importance in the global mercury cycle

  • Robert P. Mason


The emission to the atmosphere of mercury (Hg) via natural processes constitutes an important part of the global Hg input and is a dominant part of the global mercury cycle. However, while there is an ongoing and continued effort to quantify these fluxes, the magnitude of their extent is still relatively poorly constrained. It must be emphasized that while the fluxes discussed in this chapter are due to natural processes, they constitute Hg that has originated from different sources, and because of the potential for deposited Hg to be re-emitted to the atmosphere from both the terrestrial and aquatic landscape, these fluxes include both primary sources and secondary (recycled) Hg. Thus the emissions are due to: 1) primary geogenic natural emissions (e.g. volcanoes); 2) recycled Hg from natural sources; and 3) recycled Hg from point source anthropogenic emissions. Overall, it is estimated that terrestrial inputs are 1850 Mg yr-1 while emission from the ocean is 2680 Mg yr-1. On an area basis, emissions from land are higher than from the ocean. Forests constitute about 20% of these emissions, with total emissions from vegetated regions being about 60% of the total terrestrial inputs. Geogenic sources account for about 5% of current terrestrial inputs.


Mercury Concentration Atmospheric Environment Compensation Point Mercury Emission Atmospheric Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.4 References

  1. Amyot, M., Mierle, G., Lean, D.R.S. and McQueen, D.J., 1994. Sunlight-induced formation of dissolved gaseous mercury in lake water. Environ. Sci. Technol., 28: 2366–2371.CrossRefGoogle Scholar
  2. Amyot, M., Mierle, G. and McQueen, D.J., 1997. Effects of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochem. Cosmochem. Acta., 61: 975.CrossRefGoogle Scholar
  3. Andersson, M.E., K. Gardfeldt, I. Wangberg, F. Sprovieri, N. Pirrone, and O. Lindqvist, 2007. Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Mar. Chem., 104: 214–226.CrossRefGoogle Scholar
  4. Ariya, P.A., Khalizov, A. and Gidas, A., 2002. Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications. Journal of Physical Chemistry A, 106(32): 7310–7320.CrossRefGoogle Scholar
  5. Ariya, P.A. et al., 2004. The Arctic: a sink for mercury. Tellus Series B-Chemical and Physical Meteorology, 56(5): 397–403.CrossRefGoogle Scholar
  6. Baeyens, W. and Leermakers, M., 1998. Elemental mercury concentrations and formation rates in the Scheldt estuary and the North Sea. Marine Chemistry, 60: 257–266.CrossRefGoogle Scholar
  7. Balabanov, N.B. and Peterson, K.A., 2003. Mercury and reactive halogens: The thermochemistry of Hg+{Cl-2, Br-2, BrCl, ClO, and BrO}. Journal of Physical Chemistry A, 107(38): 7465–7470.CrossRefGoogle Scholar
  8. Bash, J.O., Miller, D.R., Meyer, T.H. and Bresnahan, P.A., 2004. Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model. Atmospheric Environment, 38(33): 5683–5692.CrossRefGoogle Scholar
  9. Bash, J.O., Bresnahan, P. and Miller, D.R., 2007. Dynamic surface interface exchanges of mercury: A review and compartmentalized modeling framework. Journal of Applied Meteorology and Climatology, 46(10): 1606–1618.CrossRefGoogle Scholar
  10. Bergan, T., Gallardo, L. and Rodhe, H., 1999. Mercury in the global troposphere: a three-dimensional model study. Atmospheric Environment, 33(10): 1575–1585.CrossRefGoogle Scholar
  11. Carpi, A. and Lindberg, S., 1997. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge. Environ. Sci. Technol., 31: 2085–2091.CrossRefGoogle Scholar
  12. Cossa, D., Martin, J.-M., Takayanagi, K. and Sanjuan, J., 1997. The distribution and cycling of mercury species in the western Mediterranean. Deep Sea Research, 44: 721–740.CrossRefGoogle Scholar
  13. Cossa, D., M.H. Cotte-Krief, R.P. Mason, and J. Bretaudeau-Sanjuan, 2004. Total mercury in the water column near the shelf edge of the European continental margin. Mar. Chem., 90: 21–29.CrossRefGoogle Scholar
  14. Costa, M. and Liss, P., 2000. Photoreduction and evolution of mercury from seawater. Science of the Total Environment, 261(1-3): 125–135.CrossRefGoogle Scholar
  15. Dalziel, J., 1995. Reactive mercury in the eastern North Atlantic and southeast Atlantic. Marine Chemistry, 49: 307–314.CrossRefGoogle Scholar
  16. Ebinghaus, R. et al., 2002. Antarctic springtime depletion of atmospheric mercury. Environmental Science & Technology, 36(6): 1238–1244.CrossRefGoogle Scholar
  17. Ericksen, J.A. et al., 2003. Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37(12): 1613–1622.CrossRefGoogle Scholar
  18. Ericksen, J.A. and Gustin, M.S., 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the Total Environment, 324(1-3): 271–279.CrossRefGoogle Scholar
  19. Fay, L. and Gustin, M., 2007. Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air and Soil Pollution, 181(1-4): 373–384.CrossRefGoogle Scholar
  20. Ferrara, R., B. Mazzolai, E. Lanzillotta, E. Nucaro, and N. Pirrone , 2000a. Temporal trends in gaseous mercury evasion in the Mediterranean seawaters. Sci. Total Environ., 259: 183–190.CrossRefGoogle Scholar
  21. Ferrara, R., Mazzolai, B, Lanzillotta, E, Nucaro, E, Pirrone, N, 2000b. Volcanoes as emission sources of atmospheric mercury in the Mediterranean Basin. Science of the Total Environment, 259: 115–121.CrossRefGoogle Scholar
  22. Ferrara, R., C. Ceccarini, E. Lanzillotta, K. Gardfeldt, J. Sommar, M. Horvat, M. Logar, V. Fajon, and J. Kotnik, 2003. Profiles of dissolved gaseous mercury concentration in the Mediterranean seawater. Atmos. Environ., 37: Suppl. 1, S85–S92.CrossRefGoogle Scholar
  23. Fitzgerald, W.F., Engstrom, D.R., Mason, R.P. and Nater, E.A., 1998. The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology, 32(1): 1–7.CrossRefGoogle Scholar
  24. Fitzgerald, W., Lamborg, CH, 2003. Geochemistry of Mercury in the Environment. In: Holland H., Turekian, KK (Editor), Treatise of Geochemistry. Elsevier, Amsterdam, pp. 107–148.Google Scholar
  25. Frescholtz, T.F., Gustin, M.S., Schorran, D.E. and Fernandez, G.C.J., 2003. Assessing the source of mercury in foliar tissue of quaking aspen. Environmental Toxicology and Chemistry, 22(9): 2114–2119.CrossRefGoogle Scholar
  26. Gardfeldt, K., J. Sommar, R. Ferrara, C. Ceccarini, E. Lanzillotta, J. Munthe, I. Wangberg, O. Lindqvist, N. Pirrone, F. Sprovieri, E. Pesenti, and D. Stromberg (2003), , . 2003. Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmos. Environ. , 37: Suppl. 1, S73–S84.CrossRefGoogle Scholar
  27. Gustin, M.S. and Lindberg, S.E., 2000. Assessing the contribution of natural sources to the global mercury cycle: The importance of intercomparing dynamic flux measurements. Fresenius Journal of Analytical Chemistry, 366(5): 417–422.CrossRefGoogle Scholar
  28. Gustin, M.S. et al., 2000. Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259(1-3): 61–71.CrossRefGoogle Scholar
  29. Gustin, M.S., 2003. Are mercury emissions from geologic sources significant? A status report. Science of the Total Environment, 304(1-3): 153–167.CrossRefGoogle Scholar
  30. Gustin, M.S. and Lindberg, S., 2005. Terrestrial mercury fluxes: Is the net exchange up, down or neither?. In: Pirrone, N. Mahaffey, KR(Editor), Dunamics of Mercury Pollution on Regional and Global Scales. Springer, New York, pp. 241–259.Google Scholar
  31. Gustin, M.S. et al., 2006. Mercury exchange between the atmosphere and low mercury containing substrates. Applied Geochemistry, 21(11): 1913–1923.CrossRefGoogle Scholar
  32. Hanson, P.J., Lindberg, S.E., Tabberer, T.A., Owens, J.G. and Kim, K.H., 1995. Foliar Exchange Of Mercury-Vapor - Evidence For A Compensation Point. Water Air and Soil Pollution, 80(1-4): 373–382.CrossRefGoogle Scholar
  33. Hedgecock, I.M.N., Pirrone, G. A., Trunfio., F., Sprovieri, 2006. Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. J. Geophys. Res. – Atmos, 111: D20302, doi:10.1029/2006JD007117.Google Scholar
  34. Horvat, M., J.Kotnik J, M. Logar, V. Fajon, T. Zvonaric, and N. 2003. Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmos. Environ., 37: S93–S108 Suppl. 1.CrossRefGoogle Scholar
  35. Hudson, R.J.M., Gherini, S., Watras, C. and Porcella, D., 1994. Modeling the biogeochemical cycling of mercury in lakes. In: Watras C.J. and Huckabee J.W. (Editors), Mercury as a Global Pollutant: Towards Integration and Synthesis. Lewis, Boca Raton,pp. 473–526.Google Scholar
  36. Kim, J.P. and Fitzgerald, W.F., 1986. Sea-air partitioning of mercury over the equatorial Pacific Ocean. Science: 1131–1133.CrossRefGoogle Scholar
  37. Kim, J.P. and Fitzgerald, W.F., 1988. Gaseous mercury profiles in the tropical Pacific Ocean. Geophysical Research Letter, 15: 40–43.CrossRefGoogle Scholar
  38. Lalonde, J.D., Amyot, M., Doyon, M.R. and Auclair, J.C., 2003. Photo-induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research-Atmospheres, 108(D6): art. no.-4200.Google Scholar
  39. Lalonde, J.D., Amyot, M., Kraepiel, A.M.L. and Morel, F.M.M., 2001. Photooxidation of Hg0 in artificial and natural waters. Environmental Science & Technology, 35(7): 1367–1372.CrossRefGoogle Scholar
  40. Lalonde, J.D., Poulain, A.J. and Amyot, M., 2002. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environmental Science & Technology, 36(2): 174–178.CrossRefGoogle Scholar
  41. Lamborg, C.H., Rolfhus, and W. F., 1999. The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean. Deep-Sea Res. II, 46: 957–977.Google Scholar
  42. Lamborg, C.H., Fitzgerald, W.F., O'Donnell, J. and Torgersen, T., 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica Et Cosmochimica Acta, 66(7): 1105–1118.CrossRefGoogle Scholar
  43. Landis, M.S., Stevens, R.K., Schaedlich, F. and Prestbo, E.M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environmental Science & Technology, 36(13): 3000–3009.CrossRefGoogle Scholar
  44. Lanzillotta, E., Ceccarini, C. and Ferrara, R., 2002. Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin. Science of the Total Environment, 300(1-3): 179–187.CrossRefGoogle Scholar
  45. Lanzillotta, E. et al., 2004. Importance of the biogenic organic matter in photo-formation of dissolved gaseous mercury in a culture of the marine diatom Chaetoceros sp. Science of the Total Environment, 318(1-3): 211–221.CrossRefGoogle Scholar
  46. Laurier, F.J.G., R.P. Mason, L. Whalin, and S. Kato, 2003. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. JGR-Atmos., 108 (D17): Art. # 4529.Google Scholar
  47. Laurier, F.J.G., Mason, R.P., Gill, G.A. and Whalin, L., 2004. Mercury distributions in the North Pacific Ocean - 20 years of observations. Marine Chemistry, 90(1-4): 3–19.CrossRefGoogle Scholar
  48. Laurier, F. and Mason, R., 2007. Mercury concentration and speciation in the coastal and open ocean boundary layer. Journal of Geophysical Research-Atmospheres, 112(D6).Google Scholar
  49. Lawson, N.M. and Mason, R.P., 2001. Concentration of mercury, methylmercury, cadmium, lead, arsenic,and selenium in the rain and stream water of two contrasting watersheds in Western Maryland. Water Research, 35(17): 4039–4052.CrossRefGoogle Scholar
  50. Lindberg, S., 1996. Forests and the global biogeochemical cycle of mercury. In: Baeyens W., Ebinghaus R. and Vasiliev O. (Editors), Global and regional mercury cycles: sources, fluxes and mass balances. Kluwer Academic Publishers, Dordrecht, pp. 359–380.Google Scholar
  51. Lindberg, S.E. and Stratton, W.J., 1998. Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environ. Sci. Technol., 32: 49–57.CrossRefGoogle Scholar
  52. Lindberg, S.E., Hanson, P.J., Meyers, T.P. and Kim, K.H., 1998b. Air/surface exchange of mercury vapor over forests - The need for a reassessment of continental biogenic emissions. Atmospheric Environment, 32(5): 895–908.CrossRefGoogle Scholar
  53. Lindberg, S.E. et al., 2002. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environmental Science & Technology, 36(6): 1245–1256.CrossRefGoogle Scholar
  54. Magarelli, G. and Fostier, A.H., 2005. Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon. Atmospheric Environment, 39(39): 7518–7528.CrossRefGoogle Scholar
  55. Mason, R.P. and Fitzgerald, W.F., 1991. Mercury speciation in open ocean waters. Water, Air, and Soil Pollution, 56: 779–789.CrossRefGoogle Scholar
  56. Mason, R.P. and Fitzgerald, W.F., 1993. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Research, 40(9): 1897–1924.CrossRefGoogle Scholar
  57. Mason, R.P., Fitzgerald, W.F. and Morel, F.M.M., 1994. The Biogeochemical Cycling of Elemental Mercury - Anthropogenic Influences. Geochimica Et Cosmochimica Acta, 58(15): 3191–3198.CrossRefGoogle Scholar
  58. Mason, R.P., Rolfhus, K.R. and Fitzgerald, W.F., 1998. Mercury in the North Atlantic. Marine Chemistry, 61: 37–53.CrossRefGoogle Scholar
  59. Mason, R.P., Morel, F.M.M. and Hemond, H.F., 1995. The role of microorganisms in elemental mercury formation in natural waters. Water, Air, and Soil Pollution, 80: 775–787.CrossRefGoogle Scholar
  60. Mason, R.P. and Sullivan, K.A., 1999. The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 46(5): 937–956.CrossRefGoogle Scholar
  61. Mason, R.P. et al.., 1999 Mercury in the Chesapeake Bay. Marine Chemistry, 65(1-2): 77–96.CrossRefGoogle Scholar
  62. Mason, R.P., Lawson, N.M. and Sheu, G.R., 2001. Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Research II, 48: 2829–2853.CrossRefGoogle Scholar
  63. Mason, R.P. and Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4): art. no.-1093.Google Scholar
  64. Mason, R.P. and Benoit, J.M., 2003. Organomercury compounds in the environment. In: Craig P.J. (Editor), Organometallic Compounds in the Environment. John Wiley and Sons, Chichester, pp. 57–99.CrossRefGoogle Scholar
  65. Mason, R.P., 2005. Air-sea exchange and marine boundary layer atmospheric transformations of mercury and their importance in the global mercury cycle. In: Pirrone N., Mahaffey, KR (Editor), Dynamics of Mercury Pollution on Regional and Global Scales. Springer, New York, pp. 213-239.Google Scholar
  66. Mather, T., Pyle, DM, 2004. Comment on Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 327: 323–329.CrossRefGoogle Scholar
  67. Miller, E.K. et al., 2005. Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology, 14(1-2): 53–70.CrossRefGoogle Scholar
  68. Miller, C.L., Mason, R.P., Gilmour, C.C. and Heyes, A., 2007. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environmental Toxicology and Chemistry, 26(4): 624–633.CrossRefGoogle Scholar
  69. Millhollen, A.G., Gustin, M.S. and Obrist, D., 2006. Foliar mercury accumulation and exchange for three tree species. Environmental Science & Technology, 40(19): 6001–6006.CrossRefGoogle Scholar
  70. Nriagu, J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature, 338: 47–49.CrossRefGoogle Scholar
  71. Nriagu, J.O., Becker, C, 2003. Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 304: 3–12.CrossRefGoogle Scholar
  72. Obrist, D., Gustin, MS, Arnone, JA, Johnson, DW, Schorran, DE, Verburg, PJ, 2005. Measurements of gaseous elemental mercury fluxes over intact tallgrass prairie monoliths during one full year. Atmospheric Environment, 39: 957–965.CrossRefGoogle Scholar
  73. Pacyna, E.G., J.M. Pacyna, F. Steenhuisen, and S. Wilson, 2006. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ, 40: 4048–4063.CrossRefGoogle Scholar
  74. Pirrone, N., Keeler, G.J. and Nriagu, J.O., 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30(19): 3379.CrossRefGoogle Scholar
  75. Poulain, A.J. et al., 2004. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment, 38(39): 6763–6774.CrossRefGoogle Scholar
  76. Poulain, A.J. et al., 2007. Biological and chemical redox transformations of mercury in fresh and salt waters of the high arctic during spring and summer. Environmental Science & Technology, 41(6): 1883–1888.CrossRefGoogle Scholar
  77. Rasmussen, P.E. et al., 2005. Measurement of gaseous mercury fluxes in the terrestrial environment. In: P.M.E.a.P. J.B. (Editor), Mercury: Sources, Measurements, Cycles and Effects. Mineralogical Society of America, Nova Scotia, CA.Google Scholar
  78. Rea, A.W., Keeler, G.J. and Scherbatskoy, T., 1996. The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: a short-term study. Atmospheric Environment, 30(19): 3257–3263.CrossRefGoogle Scholar
  79. Rea, A.W., Lindberg, S.E. and Keeler, G.J., 2001. Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35(20): 3453–3462.CrossRefGoogle Scholar
  80. Rea, A.W., Lindberg, S.E., Scherbatskoy, T. and Keeler, G.J., 2002. Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water Air and Soil Pollution, 133(1-4): 49–67.CrossRefGoogle Scholar
  81. Rolfhus, K.R. and Fitzgerald, W.F., 2001. The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochimica Et Cosmochimica Acta, 65(3): 407–418.CrossRefGoogle Scholar
  82. Schroeder, W. et al., 1998. Arctic springtime depletion of mercury. Nature, 394: 331–332.CrossRefGoogle Scholar
  83. Schuster P.F., Krabbenhoft D.P., Naftz D.L., Cecil L.D., Olson M.L., Dewild J.F., Susong D.D., Green J.R., Abbott M.L., 2002. Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environ. Sci. Technol. 36: 2303–2310.CrossRefGoogle Scholar
  84. Seigneur, C., K. Vijayaraghavan, K. Lohman, P. Karamchandani, and C. Scott 2004. Global source attribution for mercury deposition in the United States. Environ. Sci. Technol., 38: 555–569.CrossRefGoogle Scholar
  85. Selin, N.E., D.J. Jacob, R.J. Park, R.M. Yantosca, S. Strode, L. Jaegle, and D. Jaffe, 2007. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J. Geophys. Res. – Atmos, 112: D02308, doi: 10.1029/2006JD007450.Google Scholar
  86. Selin, N.E. et al., 2008. Global 3-D land-ocean-atmosphere model for mercury: present-day vs. preindustrial cycles and anthropogenic enhancement factors for deposition. Global Biogeochem. Cycles, Accepted.Google Scholar
  87. Sheu, G.R. and Mason, R.P., 2001. An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental Science & Technology, 35(6): 1209–1216.CrossRefGoogle Scholar
  88. Shia, R.L., Seigneur, C., Pai, P., Ko, M. and Sze, N.D., 1999. Global simulation of atmospheric mercury concentrations and deposition fluxes. Journal of Geophysical Research-Atmospheres, 104(D19): 23747–23760.CrossRefGoogle Scholar
  89. St Louis, V.L. et al., 2001. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science & Technology, 35(15): 3089–3098.CrossRefGoogle Scholar
  90. Strode, S.A., L. Jaegle, N.E. Selin, D.J. Jacob, R.J. Park, R.M. Yantosca, R.P. Mason, and F. Slemr, 2007. Air-sea exchange in the global mercury cycle. Global Biogeochem. Cycles, 21: doi:10.1029/2006GB002766.Google Scholar
  91. Sunderland, E.M. and Mason, R.P., 2007. Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles, 21: GB4022, doi:10.1029/2006GB002876.Google Scholar
  92. Whalin, L.M. and Mason, R.P., 2006. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon (R) bags and additions of isotopically labeled mercury. Analytica Chimica Acta, 558(1-2): 211–221.CrossRefGoogle Scholar
  93. Whalin, L., Kim, E.-H. and Mason, R., 2007. Factors influencing the oxidation, reduction, methylation and demethylation of mercury in coastal waters. Mar. Chem., 107: 278–294.CrossRefGoogle Scholar
  94. Xin, M. and Gustin, M.S., 2007. Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. Applied Geochemistry, 22(7): 1451–1466.CrossRefGoogle Scholar
  95. Zhang, H. and Lindberg, S.E., 1999. Processes influencing the emission of mercury from soils: A conceptual model. Journal of Geophysical Research-Atmospheres, 104(D17): 21889–21896.CrossRefGoogle Scholar
  96. Zhang, H., Lindberg, S., Gustin, M. and Xu, X.H., 2003. Toward a better understanding of mercury emissions from soils, Biogeochemistry of Environmentally Important Trace Elements. Acs Symposium Series, pp. 246-261.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Robert P. Mason
    • 1
  1. 1.University of TexasDallasUSA

Personalised recommendations