Mercury emissions from point sources in South Africa

  • Joy J. Leaner
  • James M. Dabrowski
  • Robert P. Mason
  • Tabby Resane
  • Marguerite Richardson
  • Martin Ginster
  • Gerhard Gericke
  • Chantel R. Petersen
  • Elizabeth Masekoameng
  • Peter J. Ashton
  • Kevin Murray


As a first step towards assessing Hg levels in a systematic approach in South Africa, representatives from the South African government, academia, research councils and key industries recently initiated a South African Mercury Assessment (SAMA) Programme (Leaner et al., 2006). The SAMA Programme has undertaken some limited Hg inventory development and monitoring studies in South Africa. The preliminary results of those studies and that of Hg monitoring undertaken at Cape Point's Global Atmospheric Watch Station (Baker et al., 2002), are discussed in this paper.


Electrostatic Precipitator Mercury Emission Cape Point Emission Reduction Factor Emission Control Device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.6 References

  1. Baker, P.G.L., Brunke, E-G., Slemr, F. and Crouch, A.M. (2002). Atmospheric mercury measurement at Cape Point, South Africa. Atmospheric Environment, 36: 2459–2465.CrossRefGoogle Scholar
  2. Barratt, G.J. and Combrink, J. (2002). An assessment of the degree of mercury (Hg) bio-transformation in two river systems following discharges from a mercury recovery plant. Water SA - Special Edition: WISA Proceedings, 2005: 1-5. Google Scholar
  3. Brunke, E-G., Labuschagne, C. and Scheel, H.E. (2001). Trace gas variations at Cape Point, South Africa, during May 1997 following a regional biomass burning episode. Atmospheric Environment, 35: 777-786.CrossRefGoogle Scholar
  4. Bunt, J.R. and Waanders, F.B. (2008). Trace element behaviour in the Sasol-Lurgi MKIV FBDB gasifier - Part 1 (The volatile elements: Hg, As, Se, Cd and Pb). Fuel, doi:10.1016/ j.fuel.2008.01.017. (article in press). Google Scholar
  5. CNCI (Cement and Concrete Institute) 2008. Statistics. Available [online] at: http://cnci. (Last accessed: April 2008).
  6. CoMSA (Chamber of Mines of South Africa). (2004). Facts and Figures, 2004. Available [online] at: (Last accessed: January 2008).
  7. CoMSA (Chamber of Mines of South Africa). (2006). Mining Education: Minerals & Metals. Available at: (Last accessed: July 2006).
  8. Dabrowski, J.A., Ashton, P.J., Murray, K., Leaner, J.J. and Mason, R.P. (2008). Anthropogenic mercury emissions in South Africa: coal combustion in power plants. Atmospheric Environment. (accepted for publication). Google Scholar
  9. Dalvie, M.A. and Ehrlich, R. (2006). Community mercury levels in the vicinity of peri-urban waste disposal sites and fossil fuel burning operations. Environment International, 32: 493-499.CrossRefGoogle Scholar
  10. De la Rosa, D.A., Velasco, A., Rosas, A. and Volke-Sepulveda, T. (2006). Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding Mexico City Metropolitan Area. Atmospheric Environment, 40: 2097-2088.Google Scholar
  11. DEAT (Department of Environmental Affairs and Tourism). (2004). National Environmental Management: Air Quality Act 2004 (Act No. 39 of 2004). Pretoria, South Africa. Google Scholar
  12. DEAT (Department of Environmental Affairs and Tourism). (2006a). Vaal Triangle Airshed Priority Area – Macro Siting Report. Pretoria, South Africa. Report Number: DEAT_RN_060001. Google Scholar
  13. DEAT (Department of Environmental Affairs and Tourism). (2006b). National Waste Management Strategy Implementation South Africa: Projections for Health Care Risk Waste Treatment. Pretoria, South Africa. Report Number: 12/9/6. Google Scholar
  14. DEAT (Department of Environmental Affairs and Tourism). (2007). Highveld Priority Area Ambient Air Quality Monitoring Network – Micro-Scale Siting Report. Pretoria, South Africa. Report Number: SIA_RN_070002. Google Scholar
  15. DME (Department of Mineral and Energy, South Africa). (2005). Dolomite and Limestone in South Africa: Supply and Demand – 2005. Directorate: Mineral Economics. Pretoria, South Africa. Google Scholar
  16. DME (Department of Mineral and Energy, South Africa). (2006). South Africa's Mineral Industry 2005/2006. Directorate: Mineral Economics. DME: Pretoria, South Africa. Report Number: Google Scholar
  17. DME (Department of Mineral and Energy, South Africa). (2008). Aggregate energy balances. Available at: (Last accessed: April 2008).
  18. DME (Department of Minerals and Energy, South Africa). (2003). Integrated Energy Plan for the Republic of South Africa. Pretoria, South Africa. Available [online] at: accessed: March 2008).
  19. DTI (Department of Trade and Industry). (2004). Import/Export data. Available at: (Last accessed: April 2008).
  20. DWAF (Department of Water Affairs and Forestry). (1998). Waste generation in South Africa, baseline studies, Waste Management series. Pretoria, South Africa. Report Number: WMB 306K/1508/4/5. Google Scholar
  21. EIA (Energy Information Administration). (2006). Country Analysis Briefs: Southern Africa (SADC). Available at: (Last accessed: December 2007).
  22. EIA (Energy Information Administration). (2007). Country Analysis Briefs: South Africa. Available at: (Last accessed: January 2008).
  23. Fatoki, O.S. and Awofolu, R. (2003). Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. Water SA, 29: 375-380.Google Scholar
  24. Frimmel, H.E. and Gartz, V.H. (1997). Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Mineralium Deposita, 32: 523-530.CrossRefGoogle Scholar
  25. Gericke, G., Surender, D. and Delport, W. (2007). Executive summary of mercury research and trace element behaviour. Eskom Report Number C096501. ESKOM, South Africa.Google Scholar
  26. Ilgen, G., Glidemann, D., Herrmann, R., Hertel, F. and Huang, J.H. (2007). Organometals of tin lead and mercury compounds in landfill gases and leachate from Bavaria, Germany. Waste Management, doi:10.1016/j.wasman.2007.06.020 (in press). Google Scholar
  27. Leaner, J.J., Dabrowski, J.M., Murray, K., Ashton, P.J., Mason, R.P., MacMillan, P., Zunckel, M. and Oosthuizen, R. (2007). Mercury Research for Policy Development in South Africa. In: Biogeochemistry of Trace Elements: Environmental Protection, Remediation and Human Health. Eds: Y.G. Zhu, N. Lepp and R. Naidu. Tsinghua University Press, China. ISBN: 978-7-302-15627-7, pp. 1036.Google Scholar
  28. Lindberg, S.E., Southworth, G., Prestbo, E.M., Wallschlager, A., Bogle, M.A. and Price, J. (2005). Gaseous methyl-and inorganic mercury in landfill gas from Florida, Minnesota, Delaware and California. Atmospheric Environment, 39: 249-258.CrossRefGoogle Scholar
  29. Mason, R.P., Lawson, N.M. and Sheu, G.R. (2000). Annual and seasonal trends in mercury deposition in Maryland. Atmospheric Environment, 34: 1691-1701.CrossRefGoogle Scholar
  30. McNab, N.J., Hughes, J.C. and Howard, J.R. (1997). Pollution effects of wastewater sludge application to sandy soils with particular reference to the behaviour of mercury. Applied Geochemistry, 12: 321-325.CrossRefGoogle Scholar
  31. MRA (Mining Review Africa). (2003). Eskom projects 2% annual growth in its coal uptake. Available at: (Last accessed: December 2007).
  32. Murkherjee, A.B., Zevenhoven, R., Bhattacharya, P., Sajwan, K.S. and Kikuchi, R. (2008). Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 52: 571-591. CrossRefGoogle Scholar
  33. Naickera, K., Cukrows ka, E. and McCarthy, T.S. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122: 29-40.CrossRefGoogle Scholar
  34. NEWMOA (Northeast Waste Management Officials' Association). (2006). Mercury in Lighting, Boston. Available [online] at: prevention/mercury/imerc/ FactSheets/lighting.cfm. (Last accessed: April 2008).
  35. Nguyen, H.T., Ki-Hyun, K., Min-Yooung, K. and Zang-Ho, S. (2008). Exchange pattern of gaseous elemental mercury in an active urban landfill facility. Chemosphere, 70: 821–832.CrossRefGoogle Scholar
  36. Oberthür, T. and Saager, R. (1986). Silver and Mercury in Gold Particles from the Proterozoic Witwatersrand Placer Gold Deposits of South Africa: Metallogenic and Geochemical Implications. Economic Geology, 81: 20-31.CrossRefGoogle Scholar
  37. Oosthuizen, J. and Ehrlich, R. (2001). The impact of pollution from a mercury processing plant in KwaZulu-Natal, South Africa, on the health of fish-eating communities in the area: an environmental health risk assessment. International Journal of Environmental Health Research, 11: 41-50.CrossRefGoogle Scholar
  38. Pacyna, E.G., Pacyna, J.M., Steenhuisen, F. and Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40: 4048-4063.CrossRefGoogle Scholar
  39. Pacyna, J.M., Pacyna, E.G., Steenhuisen, F. and Wilson, S. (2003). Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37: 109-117.CrossRefGoogle Scholar
  40. SAISI (South African Iron and Steel Institute) (2007) Statistics: Iron and Crude Steel Production. Available [online] at: (Last accessed: November 2007).
  41. Schröder, H.H.E., Van Der Linde, A. and Strydom, N.B. (1982). The emission of mercury from gold reduction works in South Africa. Journal of the South African Institute of Mining and Metallurgy, July: 193-199. Google Scholar
  42. Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaeglé, L., and Jaffe, D. (2007). Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysical Research, 112: D02308, doi:10.1029/2006JD007450.CrossRefGoogle Scholar
  43. Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J., Wängberg, I., Schroeder, W., Steffen, A. and Berg, T. (2003). Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters, 30(10): 1516, doi:10.1029/2003GL016954, 2003.CrossRefGoogle Scholar
  44. Spalding-Fecher, R. and Matibe, D.K. (2003). Electricity and externalities in South Africa. Energy Policy, 31: 721–734.CrossRefGoogle Scholar
  45. Steenkamp, V., von Arb, M. and Stewart, M.J. (2000). Metal concentrations in plants and urine from patients treated with traditional remedies. Forensic Science International, 114: 89-95.CrossRefGoogle Scholar
  46. Strode, S.A., Jaeglé, L., Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Mason, R.P. and Slemr, F. (2007). Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 21: GB1017, doi:10.1029/2006GB002766.CrossRefGoogle Scholar
  47. UNEP (United Nations Environment Programme). (2002). Global Mercury Assessment Report. UNEP: Geneva, Switzerland. Available [online] at: http:// MERCURY/ Report/ GMA-report-TOC.htm. (Last accessed: March 2008).
  48. UNEP (United Nations Environment Programme). (2005). Toolkit for identification and quantification of mercury releases. UNEP: Geneva, Switzerland. Available at: Toolkit/default.htm. (Last accessed: March 2008).
  49. Van den Heever, D.J. and Frey, B.J. (1996). Human health aspects of certain metals in tissue of the African sharptooth catfish, Clarius gariepinus, kept in treated sewage effluent and the Krugersdrift Dam: Chromium and mercury. Water SA, 22: 73-78.Google Scholar
  50. van Dyk, J.C., Keyser, M.J., Coertzen, M. (2006). Syngas production from South African coal sources using Sasol-Lurgi gasifiers. International Journal of Coal Geology, 65: 243-253.Google Scholar
  51. Van Veizen, D., Langenkamp, H. and Herb, G. (2002). Review: Mercury in Waste Incineration. Waste Management and Research, 20: 556-568.CrossRefGoogle Scholar
  52. Veiga, M. (2004). Project Report: Equipment Specification for the Demonstration Units in Zimbabwe. Project EG/GLO/01/G34: Removal of Barriers to Introduction of Cleaner Artisanal Gold Mining and Extraction Technologies. Global Mercury Project. Vienna, Austria. Available [online] at: (Last accessed: March 2008).
  53. Wagner, N.J. and Hlatshwayo, B. (2005). The occurrence of potentially hazardous trace elements in five Highveld coals, South Africa. International Journal of Coal Geology, 63: 228-246.CrossRefGoogle Scholar
  54. Wagner, N.J., Hlatshwayo, B. and Ginster, M. (2008). A source apportioned mercury mass balance across a coal-based petrochemical complex. Fuels Processing, FU PROC-D-08-00064 (submitted). Google Scholar
  55. Wang, Q., Shen, W. and Zhuangwei, M. (2000). Estimation of mercury emission from coal combustion in China. Environmental Science and Technology, 34: 2711-2713.CrossRefGoogle Scholar
  56. Zimmer, C. and McKinley, D. (2008). New Approaches to Pollution Prevention in the Healthcare Industry. Journal of Cleaner Production, 16: 734-742. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Joy J. Leaner
    • 1
  • James M. Dabrowski
    • 2
  • Robert P. Mason
    • 3
  • Tabby Resane
    • 4
  • Marguerite Richardson
    • 4
  • Martin Ginster
    • 5
  • Gerhard Gericke
    • 6
  • Chantel R. Petersen
    • 7
  • Elizabeth Masekoameng
    • 8
  • Peter J. Ashton
    • 9
  • Kevin Murray
    • 10
  1. 1.CSIR – Natural Resources and the EnvironmentStellenboschSouth Africa
  2. 2.CSIR – Natural Resources and the EnvironmentPretoriaSouth Africa
  3. 3.Department of Marine Sciences, University of ConnecticutGrotonUSA
  4. 4.Department of Environmental Affairs and TourismPretoriaSouth Africa
  5. 5.Department of Environmental Affairs and TourismPretoriaSouth Africa
  6. 6.SASOLRosebankSouth Africa
  7. 7.ESKOM, ERIDJohannesburgSouth Africa
  8. 8.CSIR - Natural Resources and the EnvironmentStellenboschSouth Africa
  9. 9.CSIR – Natural Resources and the EnvironmentPretoriaSouth Africa
  10. 10.Dep. of chemistry, and Dep. of Atmospheric and Oceanic SciencesMontrealCanada

Personalised recommendations