The AER/EPRI global chemical transport model for mercury (CTM-HG)

  • Christian Seigneur
  • Krish Vijayaraghavan
  • Kristen Lohman
  • Leonard Levin


Mercury (Hg) has an atmospheric residence time on the order of 1 year (Schroeder and Munthe, 1998). Therefore, it can be transported over long distances and the development of source-receptor relationships requires modeling tools that are compatible with fate and transport processes at global scales. Furthermore, the assessment of the potential impact of mercury emission sources at regional scales requires knowledge of the upwind concentrations of mercury species because those upwind “background” concentrations are quite influential for modeling the atmospheric fate and transport of mercury at continental and regional scales. Since there is a paucity of data to specify such boundary conditions, particularly aloft, it is more reliable to obtain such boundary conditions from a global simulation, contingent upon satisfactory performance of the global model. To that end, the AER/EPRI global chemical transport model for mercury (CTM-Hg) was developed to simulate the global cycling of atmospheric mercury. We present first a general description of the model, followed by more detailed discussions of the chemical mechanism and emission inventory. Then, results of a performance evaluation with some available data are presented. Finally, we present results for the contribution of four source regions to atmospheric mercury deposition in those regions.


Emission Inventory Anthropogenic Emission Elemental Mercury Mercury Emission Atmospheric Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

21.7 References

  1. Ariya, P.A., A. Khalizov and A. Gidas, 2002. Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications, J. Phys. Chem., 106, 7310-7320.Google Scholar
  2. Burrows, al. , 1999. The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56, 151-175.CrossRefGoogle Scholar
  3. Calvert, J.G. and Lindberg, S.E., 2005. Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmos. Environ., 39, 3355–3367.CrossRefGoogle Scholar
  4. Chin, M., D.J. Jacob, G.M. Gardner, M.S. Forman-Fowler, P.A. Spiro and D.L. Savoie, 1996. A global three-dimensional model of tropospheric sulfate, J. Geophys. Res., 101, 18,667-18,690.Google Scholar
  5. Clever, H., S.A. Johnson and E.M. Derrick, 1985: The solubility of mercury and some sparingly soluble mercury salts in water and aqueous solutions, J. Phys. Chem. Ref. Data, 14, 631-680.Google Scholar
  6. Donohoue, D.L.; Vauer, D.; Cossairt, B.; Hynes, A., 2006. Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis - pulsed laser induced fluorescence study, J. Phys, Chem. A., 110, 6623-6632.CrossRefGoogle Scholar
  7. Gårdfeldt, K. and M. Johnson, 2003. Is bimolecular reduction of Hg(II)-complexes possible in aqueous systems of environmental importance? J. Phys. Chem., 107, 4478-4482.Google Scholar
  8. Goodsite, M.E., J.M.C. Plane and H. Skov, 2004. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere, Environ. Sci. Technol., 38, 1772-1776.CrossRefGoogle Scholar
  9. Graedel, T.E. and W.C. Keene, 1995. Tropospheric budget of ractive chlorine, Global Biogeochem. Cycles, 9, 47-77.CrossRefGoogle Scholar
  10. Hall, B. and N. Bloom, 1993: Report to EPRI, Palo Alto, California, USA.Google Scholar
  11. Hall, B., 1995: The gas-phase oxidation of elemental mercury by ozone, Water Air Soil Pollut., 80, 301-315.CrossRefGoogle Scholar
  12. Hansen, J.; Russel, G.; Rind, D.; Stone, P.; Lacis, A.; Lebedeff, S.; Ruedy, R.; Travis, I., 1983. Efficient three-dimensional global models for climate studies: models I and II, Mon Weather Rev. 111, 609-662.CrossRefGoogle Scholar
  13. Jacob, D.J., 2000. Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131-2159. CrossRefGoogle Scholar
  14. Jacobson, M.Z., 1999. Fundamentals of Atmospheric Modeling, Cambridge University Press, New York.Google Scholar
  15. Jaeglé, L., D.J. Jacob, W.H. Brune and P.O. Wennberg, 2001. Chemistry of HOx radicals in the upper troposphere, Atmos. Environ., 35, 469-489.CrossRefGoogle Scholar
  16. Jaffe, D., E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama and Y. Kajii, 2005: Export of atmospheric mercury in Asia, Atmos. Environ., 39, 3029-3038.CrossRefGoogle Scholar
  17. Lin, C.J. and S.O. Pehkonen, 1997: Aqueous-free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmos. Environ., 31, 4125-4137.CrossRefGoogle Scholar
  18. Lin, C.J. and S.O. Pehkonen, 1998: Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): Implications for tropospheric mercury chemistry, J. Geophys. Res., 103, 28093-28102.CrossRefGoogle Scholar
  19. Lindberg, S., O.R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo and C. Seigneur, 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition, Ambio, 36, 19-33.CrossRefGoogle Scholar
  20. Lindqvist, O. and H. Rodhe, 1985: Atmospheric mercury – a review, Tellus, 37B, 136-159.CrossRefGoogle Scholar
  21. Lohman, K., C. Seigneur, E. Edgerton and J. Jansen, 2006. Modeling mercury in power plant plumes, Environ. Sci. Technol., 40, 3848-3854.CrossRefGoogle Scholar
  22. Lohman, K., C. Seigneur, M. Gustin and S. Lindberg, 2008. Sensitivity of the global atmospheric cycling of mercury to emissions, Appl. Geochem., 23, 454-466. CrossRefGoogle Scholar
  23. Munthe, J., 1992: The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., Part A, 26, 1461-1468.Google Scholar
  24. Pal, B. and P.A. Ariya, 2004. Studies of ozone initiated reactions of gaseous mercury: kinetics product studies, and atmospheric implications, Phys. Chem. Chem. Phys., 6, 572-579CrossRefGoogle Scholar
  25. Pehkonen, S.O. and C.J. Lin, 1998: Aqueous photochemistry of divalent mercury with organic acids, J. Air Waste Manage. Assoc., 48, 144-150.Google Scholar
  26. Radke, L.F., H.R. Friedli and B.G. Heikes, 2007. Atmospheric mercury over the NE Pacific during spring 2002: Gradients, residence time, upper troposphere lower stratosphere loss, and long-range transport, J. Geophys. Res., 112, D19305, doi:10.1029/2005JD005828.Google Scholar
  27. Raofie, F. and P.A. Ariya, 2003. Reactions of BrO with mercury: kinetic studies, J. Phys. IV France, 107, 1119-1121.CrossRefGoogle Scholar
  28. Ryaboshapko, A., R. Bullock, R. Ebinghaus, I. Ilyin, K. Lohman, J. Munthe, G. Petersen, C. Seigneur and I. Wängberg, 2002: Comparison of mercury chemistry models, Atmos. Environ., 36, 3881-3898.CrossRefGoogle Scholar
  29. Sanemasa, I., 1975: The solubility of elemental mercury vapor in water, Bull. Chem. Soc. Jpn., 48, 1795-1798.CrossRefGoogle Scholar
  30. Schroeder, W.H. and J. Munthe, 1998. Atmospheric mercury – An overview, Atmos. Environ., 32, 809-822.CrossRefGoogle Scholar
  31. Seigneur, C., H. Abeck, G. Chia, M. Reinhard, N.S. Bloom, E. Prestbo and P. Saxena, 1998: Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter, Atmos. Environ., 32, 2649-2657.CrossRefGoogle Scholar
  32. Seigneur, C., P. Karamchandani, K. Lohman, K. Vijayaraghavan and R.-L. Shia, 2001: Multiscale modeling of the atmospheric fate and transport of mercury, J. Geophys. Res., 106, 27795-27809.CrossRefGoogle Scholar
  33. Seigneur, C., K. Vijayaraghavan, K. Lohman, P. Karamchandani and C. Scott, 2004: Global source attribution for mercury deposition in the United States, Environ. Sci. Technol., 38, 555-569.CrossRefGoogle Scholar
  34. Seigneur, C., K. Vijayaraghavan and K. Lohman, 2006. Atmospheric mercury chemistry: sensitivity of global model simulations to chemical reactions, J. Geophys. Res., 111, D22306, doi:10.1029/2005JD006.Google Scholar
  35. Seigneur, C., K. Lohman, K. Vijayaraghavan, R. Balmori and L. Levin, 2007. Effect of bromine chemistry on mercury deposition in the United States, Air Quality VI: International conference on Mercury, Trace Elements, SO3 and Particulate Matter, and Greenhouse Gases, 24-27 September 2007, Arlington, Virginia.Google Scholar
  36. Selin, N.E., D.J. Jacob, R.J. Park, M. Yantosca, S. Strode and L. Jaeglé, 2007. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys., Res., 112, D02308, doi:10.1029/2006JD007450.Google Scholar
  37. Shia, R.L., C. Seigneur, P. Pai, M. Ko, and N.D. Sze, 1999. Global simulation of atmospheric mercury concentrations and deposition fluxes, J. Geophys. Res., 104, 23747-23760.CrossRefGoogle Scholar
  38. Sillen, G.L. and A.E. Martell, (Eds.), 1964: Stability constants of metal ion complexes, Spec. Publ. Chem. Soc., 17, 754.Google Scholar
  39. Sommar, J., K. Gårdfeldt, D. Strömberg and X. Feng, 2001: A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury, Atmos. Environ., 35, 3049-3054.CrossRefGoogle Scholar
  40. Spicer, C.W., E.G. Chapman, B.J. Finlayson-Pitts, R.A. Plastridge, J.M. Hubbe, J.D. Fast and C.M. Berkowitz, 1998. Unexpectedly high concentrations of molecular chlorine in coastal air, Nature, 394, 355-356.CrossRefGoogle Scholar
  41. Spivakovsky, C.R., R. Yevich, J. Logan, S. Wofsy, M. McElroy and M. Prather, 1990. Tropospheric OH in the three-dimensional chemical tracer model: An assessment based on the observations of CH3Cl3, J. Geophys. Res., 95, 18,442-18,439.Google Scholar
  42. Temme, C., F. Slemr, R. Ebinghaus and J.W. Einax, 2003. Distribution of mercury over the Atlantic Ocean in 1996 and 1999-2001, Atmos. Environ., 37, 1889-1897.CrossRefGoogle Scholar
  43. Tokos, J.J.S., B. Hall, J.A. Calhoun and E.M. Prestbo, 1998: Homogeneous gas-phase reaction of Hg0 with H2O2, O3, CH3I, and (CH3)2S: Implications for atmospheric Hg cycling, Atmos. Environ., 32, 823-827.CrossRefGoogle Scholar
  44. Travnikov, O., 2005. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere, Atmos. Environ., 39, 7541-7548.CrossRefGoogle Scholar
  45. van Loon, L., E. Mader and S.L. Scott, 2000: Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reactions, J. Phys. Chem., 104, 1621-1626.Google Scholar
  46. van Loon, L.L., E.A. Mader and S.L. Scott, 2001: Sulfite stabilization and reduction of the aqueous mercuric ion: kinetic determination of sequential formation constants, J. Phys. Chem., 105, 3190-3195Google Scholar
  47. Wang, Y., J.A. Logan and D.J. Jacob, 1998. Global simulation of tropospheric O3-NOx-hydrocarbon chemistry- 2. Model evaluation and global ozone budget, J. Geophys. Res., 103, 10,727-10,755.Google Scholar
  48. Yang, X.; Cox, R.A.; Warwick, N.J.; Pyle, J.A.; Carver, G.D., O'Connor, F.M., Savage, N.H., 2005. Troposhperic bromine chemistry and its impacts on ozone: A model study, J. Geophys. Res., 110, D23311, doi:10.1029/2005JD006244.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Christian Seigneur
    • 1
  • Krish Vijayaraghavan
    • 1
  • Kristen Lohman
    • 1
  • Leonard Levin
    • 1
  1. 1.Atmospheric & Environmental Research, Inc.San RamonUSA

Personalised recommendations