The EMEP/MSC-E mercury modeling system

  • Oleg Travnikov
  • Ilia Ilyin


The EMEP/MSC-E hemispheric chemical transport model (MSCE-HM-Hem) and its regional version (MSCE-HM) are applied for operational calculations of mercury transboundary pollution within the European region and in the Northern Hemisphere. This chapter contains examples of the models application for assessment of mercury atmospheric dispersion and deposition both on hemispheric and regional scales. Model simulations of mercury atmospheric dispersion in the Northern Hemisphere have been performed for the period 1990-2004. Long-term changes of mercury deposition during this period have been evaluated for different continents and regions of the Northern Hemisphere. Obtained modelling results have been compared with long-term monitoring data from various national and international networks. Besides, intercontinental transport of mercury as well as sensitivity of mercury deposition in the Northern Hemisphere to emission reduction in different continents have been estimated.


Northern Hemisphere Emission Reduction Mercury Concentration Deposition Flux Elemental Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, M., Wängberg, I., Gårdfeldt, K., Munthe, J., 2004. Investigation of the Henry's low coefficient for elemental mercury. Proceedings of the 7th Conference “Mercury as a global pollutant”. RMZ – Materials and Geoenvironment, Ljubljana, June 2004Google Scholar
  2. Aas W. and Breivik K., 2006. Heavy metals and POP measurements, 2004. EMEP/CCC-Report 7/2006, Kjeller, Norwegian Institute for Air Research, Oslo. ( projects/ccc/reports.html)
  3. Ariya P.A., Khalizov A., Gidas A. (2002) Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications. J. Phys. Chem. 106, 7310–7320Google Scholar
  4. Behrenfeld M.J. and Falkowski P.G. (1997) Photosynthetic derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1–20Google Scholar
  5. Carpi A. and Lindberg S. E. (1998) Application of a teflonTM dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmos. Environ. 32(5), 873–882CrossRefGoogle Scholar
  6. Chin M., Jacob D.J., Gardner G.M., Forman-Fowler M.S., Spiro P.A., Savoie D.L. (1996) A global three-dimensional model of tropospheric sulfate, J. Geophys. Res. 101, 18667–18690CrossRefGoogle Scholar
  7. Gårdfeldt K., Sommar J., Strömberg D., Feng X. (2001) Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. Atmos. Environ. 35, 3039–3047CrossRefGoogle Scholar
  8. Grell GA, Dudhia J, and Stauffer DR. (1995) A description of the Fifth-Generation Penn State / NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, 122 pp.Google Scholar
  9. Gustin M.S., Lindberg S., Marsik F., Casimir A., Ebinghaus R., Edwards G., Hubble-Fitzgerald C., Kemp R., Kock H., Leonard T., London J., Majewski M., Montecinos C., Owens J., Pilote M., Poissant L., Rasmussen P., Schaedlich F., Schneeberger D., Schroeder W., Sommar J., Turner R., Vette A., Wallschlaeger D., Xiao Z., and Zhang H. (1999) Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces. J. Geophys. Res. 104(D17), 21831–21844CrossRefGoogle Scholar
  10. Hall B. (1995) The gas phase oxidation of mercury by ozone. WASP 80, 301–315Google Scholar
  11. Jacobson, M. Z., 1999. Fundamentals of atmospheric modeling. Cambridge University Press. 656 p.Google Scholar
  12. Hedgecock I.M., Pirrone N. (2004) Chasing Quicksilver: Modelling the Atmospheric Lifetime of Hg0(g) in the marine boundary layer at various latitudes. Environ. Sci. Technol. 38, 69–76CrossRefGoogle Scholar
  13. Kellerhals M., Beauchamp S., Belzer W., Blanchard P., Froude F., Harvey B., McDonald K., Pilote M., Poissant L., Puckett K., Schroeder B., Steffen A., Tordon R. (2003) Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 37(7), 1003–1011CrossRefGoogle Scholar
  14. Kim K.-H., Lindberg S. E. and Meyers T. P. (1995) Micrometeorological measurements of mercury vapor fluxes over background forest souls in eastern Tennessee. Atmos. Environ. 29(2), 267–282CrossRefGoogle Scholar
  15. Kim, K.-H., Kim, M.-Y., Kim, J., Lee, G. (2002) The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late Mart 2001. Atmos. Environ. 36, 3413–3427CrossRefGoogle Scholar
  16. Lamborg C.H., Fitzgerald W.F., O'Donnell J., Torgersen T. (2002) A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmochim. Acta 66, 1105–1118CrossRefGoogle Scholar
  17. Laurier F.J.G., Mason R.P., Whalin L., Kato S. (2003) Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry. J. Geophys. Res. 108(D17), 4529CrossRefGoogle Scholar
  18. Lee Y.H., Bishop K.H., Munthe J. (2000) Do concepts about catchment cycling of methylmercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, northern Sweden. Sci. Tot. Environ. 249, 11–20CrossRefGoogle Scholar
  19. Lin C.-J., Pehkonen S. O. (1999) The chemistry of atmospheric mercury: a review. Atmos. Environ. 33, 2067–2079CrossRefGoogle Scholar
  20. Lurie Yu. Yu. [1971] Handbook for Analytical Chemistry. Khimiya, Moscow, 454 p.Google Scholar
  21. Mason R.P. and Sheu G.-R. (2002) Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles 16(4), 1093, doi:10.1029/2001GB001440CrossRefGoogle Scholar
  22. Munthe J. (1992) The aqueous oxidation of elemental mercury by ozone. Atmos. Environ. 26A, 1461–1468Google Scholar
  23. Munthe J., Hultberg H., Iverfeldt Å. (1995) Mechanisms of deposition of methylmercury and mercury to coniferous forests. WASP 80, 363–371Google Scholar
  24. Munthe (2005) personal communicationGoogle Scholar
  25. Pacyna J, Pacyna E, Steenhuisen F, Wilson S. (2003) Mapping 1995 global anthropogenic emissions of mercury. Atmos. Environ. 37(S1), S109–S117CrossRefGoogle Scholar
  26. Pacyna E. G., Pacyna J. M., Steenhuisen F. and Wilson S. (2006) Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40(22), 4048–4063CrossRefGoogle Scholar
  27. Pirrone N., Ferrara R., Hedgecock I. M., Kallos G., Mamane Y., Munthe J., Pacyna J. M., Pytharoulis I., Sprovieri F., Voudouri A., Wangberg I. (2003) Dynamic Processes of Mercury Over the Mediterranean Region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmos. Environ. 37(S1), 21–39CrossRefGoogle Scholar
  28. Petersen G., Munthe J., Pleijel K., Bloxam R., Vinod Kumar A. (1998) A comprehensive Eulerian modeling framework for airborne mercury species: development and testing of the tropospheric chemistry module (TCM). Atmos. Environ. 32, 829–843CrossRefGoogle Scholar
  29. Poissant L. and Casimir A. (1998) Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmos. Environ. 32(5), 883–893CrossRefGoogle Scholar
  30. Porvari, P., Verta, M. (2003) Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland. Environ. Pollut. 123(2), 181–191CrossRefGoogle Scholar
  31. Rubinstein K., Kiktev D. (2000) Comparison of the atmospheric low-layer diagnostic system (SDA) for pollution transfer modelling at MSC-East (Moscow) and MSC-West (Oslo). Environmental Modelling & Software 15, 589–596CrossRefGoogle Scholar
  32. Ruijgrok W., Tieben H., Eisinga P. (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos. Environ. 31, 399 – 415CrossRefGoogle Scholar
  33. Ryaboshapko A., Ilyin I., Bullock R., Ebinghaus R., Lohman K., Munthe J., Petersen G., Segneur C., Wangberg I. (2001) Intercomparison study of numerical models for long-range atmospheric transport of mercury. Stage I: Comparison of chemical modules for mercury transformations in a cloud/fog environment. EMEP/MSC-E Technical report 2/2001, Meteorological Synthesizing Centre – East, Moscow, Russia ( Scholar
  34. Sander R. (1997) Henry's law constants available on the Web. EUROTRAC Newsletter 18, 24-25 (∼sander/res/henry)
  35. Schwesig D., Ilgen G., Matzner E. (1999) Mercury and methylmercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany. WASP 113, 141–154.Google Scholar
  36. Schwesig D., and Matzner E. (2000) Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Sci. Total Environ. 260, 213–223CrossRefGoogle Scholar
  37. Seigneur C., Karamchandani P., Lohman K., Vijayaraghavan K., Shia R.-L., 2001. Multiscale modeling of the atmospheric fate and transport of mercury. J. Geophys. Res. 106, 27795–27809CrossRefGoogle Scholar
  38. Slemr F. (1996) Trends in atmospheric mercury concentrations over the Atlantic ocean and the Wank Summit, and the resulting concentrations on the budget of atmospheric mercury. In: Baeyens W., Ebinghaus R. Vasiliev O. (Eds.), Global and Regional Mercury Cycles: Sources, Flaxes and Mass Balances, pp. 33–84. NATO-ASI-Series, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  39. Slinn W.G.N. (1982) Predictions for particle deposition to vegetative canopies. Atmos. Environ. 16, 1785–1794CrossRefGoogle Scholar
  40. Spivakovsky C.M., Logan J.A., Montzka S.A., Balkanski Y.J., Foreman-Fowler M., Jones D.B.A., Horowitz L.W., Fusco A.C., Brenninkmeijer C.A.M., Prather M.J., Wofsy S.C., McElroy M.B. (2000) Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J. Geophys. Res. 105, 8931–8980CrossRefGoogle Scholar
  41. Sommar J., Gårdfeldt K., Strömberg D., Feng X. (2001) A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmos. Environ. 35, 3049–3054CrossRefGoogle Scholar
  42. Strode S.A., Jaegle L., Selin N., Jacob D.J., Park R.J., Yantosca R.M., Mason R.P., Slemr F. (2007) Air-sea exchange in the global mercury cycle. Glob. Biogeochem. Cycles 21(4), GB1017CrossRefGoogle Scholar
  43. Tan H., He J.L., Liang L., Lazoff S., Sommer J., Xiao Z.F., Lindqvist O. (2000) Atmospheric mercury deposition in Guizhou, China. Sci. Total Environ. 259, 223–230CrossRefGoogle Scholar
  44. Travnikov O, Ryaboshapko A. (2002) Modelling of mercury hemispheric transport and depositions. EMEP/MSC-E Technical Report 6/2002, Meteorological Synthesizing Centre - East, Moscow, Russia. (
  45. Travnikov O, Ilyin I. (2005) Regional model MSCE-HM of heavy metal transboundary air pollution in Europe. EMEP/MSC-E Technical Report 6/2005, Meteorological Synthesizing Centre - East, Moscow, Russia. (
  46. Travnikov O. (2005) Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmos. Environ. 39, 7541–7548CrossRefGoogle Scholar
  47. Walton J.J., MacCracken M.C. and Ghan S.J. (1988) A global-scale Lagrangian trace species model of transport, transformation, and removal processes. J. Geophys. Res. 93(D7), 8339–8354CrossRefGoogle Scholar
  48. Wang N., Logan J.A., Jacob D.J. (1998) Global simulation o ftropospheric O3-Nox-hydrocarbon chemistry, 2., Model evaluation and global ozone budget. J. Geophys. Res. 103, 10727–10755CrossRefGoogle Scholar
  49. WebDab (2006),
  50. Wesely M.L., Cook D.R., Hart R.L. (1985) Measurements and parameterization of particulate sulfur dry deposition over grass. J. Geophys. Res. 90, 2131–214CrossRefGoogle Scholar
  51. Wesely M.L. and Hicks B.B. (2000) A review of the current status of knowledge on dry deposition. Atmos. Environ. 34, 2261–22CrossRefGoogle Scholar
  52. Williams R.M. (1982) A model for the dry deposition of particles to natural water surfaces. Atmos. Environ. 16, 1933–1938CrossRefGoogle Scholar
  53. Zhang H., Lindberg S. E., Marsik F. J., and Keeler G. J. (2001) Mercury air/surface exchange kinetics of background soils of the Tahquamenon River watershed in the Michigan upper peninsula. WASP 126, 151–169Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Oleg Travnikov
    • Ilia Ilyin

      There are no affiliations available

      Personalised recommendations