The Geos-Chem model

  • Lyatt Jaeglé
  • Sarah A. Strode
  • Noelle E. Selin
  • Daniel J. Jacob


We examine the response of deposition to decreases in anthropogenic emissions using the GEOS-Chem global atmosphere-ocean-land mercury simulation. Total global mercury sources in the model are 9230 Mg yr-1 (3400 Mg yr-1 anthropogenic, 650 Mg yr-1 biomass burning, 2180 Mg yr-1 land emissions, 3000 Mg yr-1 ocean emissions). Our atmospheric simulation describes the cycling of mercury through the surface ocean and land reservoirs. The model includes atmospheric oxidation of Hg0 by OH and O3, and in-cloud reduction of Hg(II). Wet and dry deposition account for 32% and 68% of the global sink, respectively. The lifetime of mercury against deposition is 0.6 years. We conduct four sensitivity simulations where anthropogenic emissions are reduced by 20% over East Asia, Europe, South Asia, and North America, leading to decreases in global deposition of -3.5, -0.9, -0.8, and -0.5% respectively. One third of the deposition decrease occurs in the source regions, and the rest is distributed globally due to decreased long-range transport of Hg0 and subsequent oxidation to Hg(II). Regional decreases in deposition within the source regions range from -12% for East Asia (60% of depositions due to local emissions) to -3% for North America (where only 15% of deposition is due to local emissions). When normalized by total emissions, we find that Hg deposition in the Arctic is more sensitive to decreases in European emissions compared to decreases in East Asian, North American, or South Asian emissions. Our estimates of the distribution of deposition and its response to decreases in anthropogenic emissions are limited by uncertainties in the speciation of anthropogenic emissions, redox chemistry of atmospheric mercury, the role of dry deposition, and the cycling efficiency of mercury in the ocean and land reservoirs.


Anthropogenic Emission South Asia Perturbation Experiment East Asia Atmospheric Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amyot, M., G., Southworth, S.E. Lindberg, H. Hintelmann, J.D. Lalonde, N. Ogrinc, A.J. Poulain and K.A. Sandilands, 2004. Formation and evasion of dissolved gaseous mercury in large enclosures amended with 200HgCl2, Atmospheric Environment, 38, 4279-4289.CrossRefGoogle Scholar
  2. Bey, I., , 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research-Atmospheres, 106, 23,073-23,096.Google Scholar
  3. Duncan, B. N., R.V. Martin, A. Staudt, R. Yevich, and J.A. Logan, 2003. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, Journal of Geophysical Research-Atmospheres, 108, 4040, doi:10.129/2002JD002378.CrossRefGoogle Scholar
  4. Hintelmann, H., R. Harris, A. Heyes, J. Hurley, C. Kelly, D. Krabbenhoft, S. Lindberg, J.W.M. Rudd, K. Scott and V. St. Louis, 2002. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study, Environmental Science and Technology, 36, 5034-5040.CrossRefGoogle Scholar
  5. Holmes, C. D., D. J. Jacob, and X. Yang, 2006. Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere. Geophysical Research Letters, 33, L20808, doi:10.1029/2006GL027176.CrossRefGoogle Scholar
  6. Jaffe, D., E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama, and Y. Kajii, 2005. Export of atmospheric mercury from Asia, Atmospheric Environment, 39, 3029-3038.CrossRefGoogle Scholar
  7. Pacyna, E.G., J.M. Pacyna, F. Streenhuisen, and S. Wilson, 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4038-4063.CrossRefGoogle Scholar
  8. Ryaboshapko, A., , 2002. Comparison of mercury chemistry models. Atmospheric Environment, 36, 3881-3898.CrossRefGoogle Scholar
  9. Selin, N.E., D.J. Jacob, R.J. Park, R.M. Yantosca, S. Strode, L. Jaeglé and D. Jaffe, 2007. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysical Research-Atmospheres, 112, D02308, doi:10.1029/2006JD007450.CrossRefGoogle Scholar
  10. Selin, D.J. Jacob, R.M. Yantosca, S. Strode, L. Jaeglé, and E.M. Sunderland, 2008. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycles, doi:10.1029/2007GB003040.Google Scholar
  11. Selin, N.E., and D.J. Jacob, 2008. Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmospheric Environment, doi:10.1016/j.atmosenv.2008.02.069Google Scholar
  12. Stohl, A., , 2002. On the pathways and timescales of intercontinental air pollution transport. Journal of Geophysical Research-Atmospheres, 107(D23), 4684, doi:10.1029/ 2001JD001396.CrossRefGoogle Scholar
  13. Strode, S., L. Jaeglé, N.E. Selin, D.J. Jacob, R.J. Park, R.M. Yantosca, R.P. Mason, and F. Slemr, 2007. Air-Sea Exchange in the Global Mercury Cycle. Global Biogeochemical Cycles, 21, GB1017, doi:10.1029/2006GB002766.CrossRefGoogle Scholar
  14. Strode, S., L. Jaeglé, D.A. Jaffe, P.C. Swartzendruber, N.E. Selin, C. Holmes, and R.M. Yantosca, 2008. Trans-Pacific transport of mercury. Journal of Geophysical Research-Atmospheres, doi:10.1029/2007JD009428.Google Scholar
  15. Swartzendruber, P., D.A. Jaffe, E.M. Presbo, P. Weiss-Penzias, N.E. Selin, R. Park, D.J. Jacob, S. Strode, and L. Jaeglé, 2006. Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. Journal of Geophysical Research-Atmospheres, 111, D24301, doi:10.1029/2006JD007415.CrossRefGoogle Scholar
  16. Travnikov, O., 2005. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmospheric Environment, 39, 7541-7548.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Lyatt Jaeglé
    • 1
  • Sarah A. Strode
  • Noelle E. Selin
  • Daniel J. Jacob
  1. 1.University of Washington, Dep. of Atmospheric SciencesSeattleUSA

Personalised recommendations