Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfaces

  • Anthony J. Hynes
  • Deanna L. Donohoue
  • Michael E. Goodsite
  • Ian M. Hedgecock


The predictions of atmospheric chemical models are limited by the accuracy of our understanding of the basic physical and chemical processes that underlie the models. In this work we review the current state of our knowledge of the chemical processes that transform atmospheric mercury species via gas and aqueous phase reactions and the physical processes of deposition. We concur with the conclusions of other recent reviews that our understanding of the basic chemistry that controls mercury is incomplete and the experimental data either limited or nonexistent. In spite of this recent experimental and theoretical studies of mercury reaction kinetics have clarified some issues. Observations in Polar Regions suggest that Hg0 can undergo fast oxidation in the presence of elevated levels of bromine compounds. Both experimental and theoretical studies suggest that the recombination of Hg0 with Br atoms is sufficiently fast to initiate this oxidation process. However there is a large uncertainty in the value of the rate coefficient for this recombination reaction and in the fate of the reaction product, HgBr. Most global mercury models incorporate reactions of Hg0 with OH and O3. Based on the most recent high level ab-initio calculations of the stability of HgO it appears that neither of these reactions is likely to play a significant role in mercury oxidation. The most important aqueous oxidation for Hg0 appears to be reaction with O3 however that there has only been one determination of the Hg + O3 reaction rate constant in the aqueous phase. Aqueous phase reduction of oxidized mercury via reaction with HO2 is the only significant reduction reaction in current models but now seems unlikely to be significant. Again this suggests that the chemistry controlling mercury transformation in current models requires significant modification.


Rate Coefficient Liquid Water Content Elemental Mercury Atmospheric Mercury Alkyl Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14.8 References

  1. Ariya, P. A., Alexei Khalizov, and Alexios Gidas, 2002, Reactions of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications, J. Phys. Chem. A. 106, 7310–7320; (Article) DOI: 10.1021/jp020719oCrossRefGoogle Scholar
  2. Ariya P. A. and K. A. Peterson in Pirrone, N., and Mahaffey, K.R., eds., Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World: Springer Science and Business Media, Inc. 2005Google Scholar
  3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee, :Evaluatedkinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, 2006Google Scholar
  4. Balabanov N. B., B. C. Shepler, and K. A. Peterson, 2005, Accurate Global Potential Energy Surface and Reaction Dynamics for the Ground State of HgBr2, J. Phys. Chem. A, 109, 8765–8773, DOI: 10.1021/jp053415lCrossRefGoogle Scholar
  5. Bauer, D., L. D'Ottone, P. Campuzano-Jost, A. J. Hynes, 2003, Gas phase elemental mercury: a comparison of LIF detection techniques and study of the kinetics of reaction with the hydroxyl radical, Journal of Photochemistry and Photobiology A, 157, 247–256CrossRefGoogle Scholar
  6. Bergan T. and H. Rohde, 2001, Oxidation of Elemental Mercury in the Atmosphere; Constraints Imposed by Global Scale Modelling, J. Atmos. Chem., 40, 191–212, DOI 10.1023/A: 1011929927896CrossRefGoogle Scholar
  7. Calvert J. G. and S. E. Lindberg, Mechanisms of mercury removal by O3 and OH in the atmosphere Atmos. Environ. 39, 3355, 2005.CrossRefGoogle Scholar
  8. Chase, M.W. NIST-JANAF Thermochemical Tables, Fourth Edition: Journal of Physical Chemical Reference, Monograph 9, 1998.Google Scholar
  9. Clever, H.L., Johnson, S.A., Derrick, M.E. The solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions. J. Phys. Chem. Refer. Data, 14, 631–680, 1985.Google Scholar
  10. Cobbett F. D. and B.J. Van Heyst, 2007, Measurements of GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) from an agricultural field amended with biosolids in Southern Ont., Canada (October 2004–November 2004), Atmospheric Environment, 41, 2270–2282CrossRefGoogle Scholar
  11. Cobbett, F. D. A. Steffen, G. Lawson, B. J. Van Heyst, 2007, GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) in the Canadian Arctic at Alert, Nunavut, Canada (February–June 2005), Atmospheric Environment, 41, 6527–6543CrossRefGoogle Scholar
  12. Donohoue D. L. , D. Bauer, and A. J. Hynes, 2005, Temperature and Pressure Dependent Rate Coefficients for the Reaction of Hg with Cl and the Reaction of Cl with Cl: A Pulsed Laser Photolysis-Pulsed Laser Induced Fluorescence Study, J. Phys. Chem. A, 109, 7732–7741, DOI: 10.1021/jp051354lCrossRefGoogle Scholar
  13. Donohoue D. L., D. Bauer, B. Cossairt, and A. J. Hynes, 2006, Temperature and Pressure Dependent Rate Coefficients for the Reaction of Hg with Br and the Reaction of Br with Br: A Pulsed Laser Photolysis-Pulsed Laser Induced Fluorescence Study, J. Phys. Chem. A, 110, 6623–6632, DOI: 10.1021/jp054688jCrossRefGoogle Scholar
  14. Edwards, G., P. Rasmussen, W. Schroeder, R. Kemp, G. Dias, C. Fitzgerald-Hubble, E. Wong, L. Halfpenny-Mitchell, and M. Gustin (2001), Sources of variability in mercury flux measurements, J. Geophys. Res., 106(D6), 5421–5435.CrossRefGoogle Scholar
  15. Gårdfeldt K., J. Sommar, D. Strömberg and X. Feng, 2001, Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase, Atmospheric Environment, 35 (17), 3039–3047CrossRefGoogle Scholar
  16. Gårdfeldt, K. Jonsson, M. Is bimolecular reduction of Hg(II) complexes possible in aqueous systems of environmental importance. J. Phys. Chem. A, 107, 4478–4482, 2003.CrossRefGoogle Scholar
  17. Givelet, N., Roos-Barraclough, F. and Shotyk, W. (2003) Rates and predominant anthropogenic sources of atmospheric Hg accumulation in southern Ontario recorded by peat cores from three bogs: comparison with natural “background” values (past 8,000 years). Journal of Environmental Monitoring 5, 935–949CrossRefGoogle Scholar
  18. Givelet, N.; Roos-Barraclough, F.; Goodsite, M. E.; Cheburkin, A. K.; Shotyk, W., 2004, Atmospheric Mercury Accumulation Rates Between 5900 and 800 Calibrated Years BP in the High Arctic of Canada Recorded by Peat Hummocks, Environ. Sci. Technol., 38, 4964–4972. DOI: 10.1021/es035293lCrossRefGoogle Scholar
  19. Goodsite, M. E., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere, Environ. Sci. Technol., 38(6), 1772–1776, 2004.CrossRefGoogle Scholar
  20. Hall, B. D.: The gas-phase oxidation of elemental mercury by ozone, Water Air and Soil Pollution, 80, 301–315, 1995.CrossRefGoogle Scholar
  21. Hedgecock, I. and Pirrone, N. (2001) Mercury and Photochemistry in the Marine Boundary Layer – Modelling Studies suggest the in situ Production of Reactive Gas Phase Mercury. Atmospheric Environment. Vol. 35, 3055–3062.CrossRefGoogle Scholar
  22. Hedgecock, I. M., and Pirrone, N., (2004) Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg0 (g) in the Marine Boundary Layer at Various Latitudes. Environmental Science and Technology, Vol.38, 69–76.CrossRefGoogle Scholar
  23. Hedgecock, I. M., Trunfio, G.A., Pirrone, N., Sprovieri, F. (2005) Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model. Atmospheric Environment, Vol. 39, 7217–7230.CrossRefGoogle Scholar
  24. Hynes, A.J., P. H. Wine, and J. M. Nicovich, 1988, Kinetics and mechanism of the reaction of hydroxyl with carbon disulfide under atmospheric conditions, J. Phys. Chem., 92, 3846–3852; DOI: 10.1021/j100324a034CrossRefGoogle Scholar
  25. Holmes C. D., D. J. Jacob, X. Yang (2006), Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere, Geophys. Res. Lett., 33, L20808, doi:10.1029/2006GL027176.Google Scholar
  26. Iverfeldt, A and O. Lindqvist, 1986, Atmospheric oxidation of elemental mercury by ozone in the aqueous phase, Atmospheric Environment, 20 (8), 567–1573)Google Scholar
  27. Khalizov A. F., B. Viswanathan, P. Larregaray, and P. A. Ariya, 2003, A Theoretical Study on the Reactions of Hg with Halogens: Atmospheric Implications, J. Phys. Chem. A., 107, 6360–6365, DOI: 10.1021/jp0350722CrossRefGoogle Scholar
  28. Landis M. S. et al., in Pirrone, N., and Mahaffey, K.R., eds., Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World: Springer Science and Business Media, Inc. 2005Google Scholar
  29. Lin, C-J., Pehkonen, S.O. Aqueous Phase Reactions of Mercury with Free Radicals and Chlorine: Implications for Atmospheric Mercury Chemistry. Chemosphere, 38, 1253–1263, 1999.CrossRefGoogle Scholar
  30. Lin, C-J., Pehkonen, S.O. Two-Phase Model of Mercury Chemistry in the Atmosphere. Atmos. Environ., 32, 2543–2558, 1998b.CrossRefGoogle Scholar
  31. Lin, C.-J., Pehkonen, S.O. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmos. Environ., 31, 4125–4137, 1997.CrossRefGoogle Scholar
  32. Lin, C.-J., Pehkonen, S.O. Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): implication for tropospheric mercury chemistry. J. Geophys. Res., 103, 28093–28201, 1998.CrossRefGoogle Scholar
  33. Lin, C.J, P. Pongprueksa, S.E. Lindberg, S.O. Pehkonen, D. Byun ,C. Jang, Scientific uncertainties in atmospheric mercury models. SI: Model science evaluation, Atmospheric Environment 40, 2911–2928, 2006.Google Scholar
  34. Lindberg, S. E., Brooks, S., Lin, C.-J., Scott, K. J., Landis, M. S., Stevens, R. K., Goodsite, M., and Richter, A.: Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise, Environ. Sci. Technol., 36, 1245–1256, 2002.CrossRefGoogle Scholar
  35. Lindqvist, O., Rodhe, H. Atmospheric mercury—a review. Tellus, 37B, 136–159, 1985.CrossRefGoogle Scholar
  36. Madsen, P. P., Peat bog records of atmospheric mercury deposition, Nature 293, 127, 1981.CrossRefGoogle Scholar
  37. Munthe, J., 1992, The aqueous oxidation of elemental mercury by ozone, Atmos. Environ., 26A, 1461–1468Google Scholar
  38. Munthe, J., Xiao, Z.F. and Lindquist, O., The aqueous reduction of divalent mercury by sulphite. Water, Air and Soil Pollution 56, 621–630, 1991.CrossRefGoogle Scholar
  39. Murphy, D. M.; Cziczo, D. J.; Froyd, K. D.; Hudson, P. K.; Matthew, B. M.; Middlebrook, A. M.; Peltier, R. E.; Sullivan, A.; Thomson, D. S.; Weber, R. J. 2006a Single-particle mass spectrometry of tropospheric aerosol particles J. Geophys. Res., Vol. 111, No. D23, D23S32 10.1029/2006JD007340Google Scholar
  40. Murphy, D. M.; Hudson, P. K.; Thomson, D. S.; Sheridan, P. J.; Wilson, J. C., 2006b Observations of Mercury-Containing Aerosols Environ. Sci. Technol. 40 3163–3167. DOI: 10.1021/es052385xCrossRefGoogle Scholar
  41. Nazhat, N. B., K.-D. Asmus, Reduction of mercuric chloride by hydrated electrons and reducing radicals in aqueous solutions. Formation and reactions of HgCl, J. Phys. Chem., 77(5), 614–620, 1973.CrossRefGoogle Scholar
  42. Pal B. and P. A. Ariya, 2004, Gas-Phase HO-Initiated Reactions of Elemental Mercury: Kinetics, Product Studies, and Atmospheric Implications, Environ. Sci. Technol., 38, 5555–5566, DOI: 10.1021/es0494353CrossRefGoogle Scholar
  43. Pal, B. and Ariya, P. A.: Kinetics and mechanism of O3-initiated reaction of Hg0: atmospheric implication, J. Phys. Chem.-Chem. Phys., 6, 752, 2004.Google Scholar
  44. Pehkonen, S.O., Lin, C.-J. Aqueous photochemistry of mercury with organic acids. J. A. W. M. A.,. 48, 144–150, 1998.Google Scholar
  45. Peleg, M.; Matveev, V.; Tas, E.; Luria, M.; Valente, R. J.; Obrist, D., Mercury Depletion Events in the Troposphere in Mid-Latitudes at the Dead Sea, Israel, Environ. Sci. Technol.; (Article); 2007; 41(21); 7280–7285. DOI: 10.1021/es070320jCrossRefGoogle Scholar
  46. Pirrone, N., Hedgecock, I., Forlano, L. The Role of the Ambient Aerosol in the Atmospheric Processing of Semi-Volatile Contaminants: A Parameterised Numerical Model (GASPAR). Journal of Geophysical Research, 105, D8, 9773–9790, 2000. CrossRefGoogle Scholar
  47. Pleijel, K., Munthe, J. Modelling the Atmospheric Mercury Cycle - Chemistry in Fog Droplets. Atmos. Environ., 29, 1441–1457, 1995.CrossRefGoogle Scholar
  48. Raofie F. and P. A. Ariya, 2003, Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys. IV, p. 1119Google Scholar
  49. Raofie F. and P.A. Ariya, 2004, Product Study of the Gas-Phase BrO-Initiated Oxidation of Hg0: Evidence for Stable Hg1+ Compounds, Environ. Sci. Technol., 38, 4319–4326, DOI: 10.1021/es035339aCrossRefGoogle Scholar
  50. Roos-Barraclough F. and W. Shotyk, 2003, Millennial-Scale Records of Atmospheric Mercury Deposition Obtained from Ombrotrophic and Minerotrophic Peatlands in the Swiss Jura Mountains Environmental Science and Technology 37, 235–244. DOI: 10.1021/es0201496 Google Scholar
  51. Roos-Barraclough, F.; Givelet, N.; Cheburkin, A. K.; Shotyk, W.; Norton, S. A., 2006Google Scholar
  52. Sander S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Modeling, JPL 06-2, Jet Propulsion Laboratory, Pasadena, CA, 2006.Google Scholar
  53. Sanemasa, I. (1975) The solubility of elemental mercury vapour in water, Bull. Chem. Soc. Jpn., 48, 1795–98.CrossRefGoogle Scholar
  54. Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., and Berg, T.: Arctic springtime depletion of mercury, Nature, 394, 331–332, 1998.CrossRefGoogle Scholar
  55. Schroeder, W.H., Munthe, J., Atmospheric mercury - an overview. Atmos. Environ., 32, 809–822, 1998.CrossRefGoogle Scholar
  56. Seigneur C., K. Vijayaraghavan, K. Lohman (2006), Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions, J. Geophys. Res., 111, D22306, doi:10.1029/2005JD006780.CrossRefGoogle Scholar
  57. Selin, N.E., D.J. Jacob, R.J. Park, R.M. Yantosca, S. Strode, L. Jaegle,and D. Jaffe, Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, J. Geophys. Res, 112, DO2308, doi:10.1029/2006JD007450, 2007.CrossRefGoogle Scholar
  58. Shepler B. C, N. B. Balabanov, and K. A. Peterson, 2007, Hg+Br HgBr recombination and collision-induced dissociation dynamics, J. Chem. Phys. 127, 164304 (2007); DOI:10.1063/1.2777142 CrossRefGoogle Scholar
  59. Shepler B. C. and K. A. Peterson, 2003, Mercury Monoxide: A Systematic Investigation of Its Ground Electronic State, J. Phys. Chem. A, 107, 1783–1787; DOI: 10.1021/jp027512fCrossRefGoogle Scholar
  60. Shotyk, W., M. E. Goodsite, F. Roos-Barraclough, R. Frei, J. Heinemeier, G. Asmund, C. Lohse, T. S. Hansen, 2003, Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”, Geochimica et Cosmochimica Acta, 67, 21, 3991–4011CrossRefGoogle Scholar
  61. Shotyk, W., M.E. Goodsite, F. Roos-Barraclough, N. Givelet, G. Le Roux, D. Weiss, A.K. Cheburkin, K. Knudsen, J. Heinemeier, W.O. van Der Knaap, S.A. Norton, C. Lohse, 2005, Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands, Geochimica et Cosmochimica Acta, 69, 1–17CrossRefGoogle Scholar
  62. Skov, H., S. B. Brooks, M. E. Goodsite, S. E. Lindberg, T. P. Meyers, M. S. Landis, M. R.B. Larsen, B. Jensen, G. McConville, J. Christensen, 2006, Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation, Atmospheric Environment, 40, 5452–5463CrossRefGoogle Scholar
  63. Sommar, J., M. Hallquist, 1997, On the Gas Phase Reactions Between Volatile Biogenic Mercury Species and the Nitrate Radical, Journal of Atmospheric Chemistry, 27, 233, 1997 CrossRefGoogle Scholar
  64. Sommar, J. K. Gårdfeldt, D. Strömberg, X. Feng, 2001, A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury, Atmospheric Environment, 35, 3049–3054CrossRefGoogle Scholar
  65. Spicer C. W. et al., Kinetics of Gas-Phase Elemental Mercury Raction with Halogen Species, Ozone, and Nitrate Radical under Atmospheric Conditions: Tallahassee, FL, Florida Department of Environmental Protection, 2002Google Scholar
  66. Steffen, A., T. Douglas, M. Amyot, P. Ariya, K. Aspmo, T. Berg, J. Bottenheim, S. Brooks, F. Cobbett, A. Dastoor, A. Dommergue, R. Ebinghaus, C. Ferrari, K. Gardfeldt, M. E. Goodsite, D. Lean, A. Poulain, C. Scherz, H. Skov, J. Sommar, C. Temme, A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water, Atmos. Chem. Phys. Discuss. 2007, 7, 10837.CrossRefGoogle Scholar
  67. Sumner A. L. in Pirrone, N., and Mahaffey, K.R., eds., Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures Around the World: Springer Science and Business Media, Inc. 2005Google Scholar
  68. Swain, E. B., D. R. Engstrom, M. E. Brigham, T. A. Henning, and P. L. Brezonik, 1992, Increasing Rates of Atmospheric Mercury Deposition in Midcontinental North America, Science, 257, 784–787. CrossRefGoogle Scholar
  69. Swartzendruber, P. C., D. A. Jaffe, E. M. Prestbo, P. Weiss-Penzias, N. E. Selin, R. Park, D. J. Jacob, S. Strode, and L. Jaeglé (2006), Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory, J. Geophys. Res., 111, D24301, doi:10.1029/2006JD007415. CrossRefGoogle Scholar
  70. Tossell J. A. 2003 Calculation of the Energetics for Oxidation of Gas-Phase Elemental Hg by Br and BrO, J. Phys. Chem. A., 107, 7804–7808 DOI: 10.1021/jp030390mCrossRefGoogle Scholar
  71. Tossell, J. A. 2006, Calculation of the Energetics for the Oligomerization of Gas Phase Hg0 and HgS and for the Solvolysis of Crystalline HgO and HgS, J. Phys. Chem. A., 110, 2571–2578, DOI: 10.1021/jp056280sCrossRefGoogle Scholar
  72. F. Roos-Barraclough, N. Givelet, Andriy K. Cheburkin, W. Shotyk, and S. A. Norton. Use of Br and Se in Peat To Reconstruct the Natural and Anthropogenic Fluxes of Atmospheric Hg: A 10000-Year Record from Caribou Bog, Maine, Environmental Science and Technology 40, 3188–3194. DOI: 10.1021/es051945p.CrossRefGoogle Scholar
  73. Van Loon, L., Mader, E., Scott, S.L. Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction. J. Phys. Chem. A, 104, 1621–1626, 2000.CrossRefGoogle Scholar
  74. Van Loon, L. L., Mader, E. A., Scott, S. L. Sulfite Stabilization and Reduction of the Aqueous Mercuric Ion: Kinetic Determination of Sequential Formation Constants, J. Phys. Chem. A., 105, 3190–3195, 2001.CrossRefGoogle Scholar
  75. Wang, Z., Pehkonen, S.O., 2004. Oxidation of elemental mercury by aqueous bromine: atmospheric implications. Atmospheric Environment 38, 3675–3688.CrossRefGoogle Scholar
  76. Williams, M. B., P. Campuzano-Jost, B. M. Cossairt, A. J. Hynes, and A. J. Pounds, 2007, Experimental and Theoretical Studies of the Reaction of the OH Radical with Alkyl Sulfides: 1. Direct Observations of the Formation of the OH-DMS Adduct-Pressure Dependence of the Forward Rate of Addition and Development of a Predictive Expression at Low Temperature, J. Phys. Chem. A, 111, 89–104, DOI: 10.1021/jp063873+CrossRefGoogle Scholar
  77. Xiao Z F. et al. In: Watras, C.J., Huckabee, J.W. (Eds.), Mercury as a Global Pollutant-Integration and Synthesis. Lewis Publishers, New York, 581–592, 1994.Google Scholar
  78. Yang X., R. A. Cox, N. J. Warwick, J. A. Pyle, G. D. Carver, F. M. O'Connor, N. H. Savage (2005), Tropospheric bromine chemistry and its impacts on ozone: A model study, J. Geophys. Res., 110, D23311, doi:10.1029/2005JD006244.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Anthony J. Hynes
    • 1
  • Deanna L. Donohoue
    • 1
  • Michael E. Goodsite
    • 1
  • Ian M. Hedgecock
    • 1
  1. 1.Division of Marine and Atmospheric ChemistryUniversity of MiamiMiamiUSA

Personalised recommendations