Advertisement

The need for a coordinated global Hg monitoring network for global and regional models validation

  • Gerald J. Keeler
  • Nicola Pirrone
  • Russel Bullock
  • Sanford Sillman
Chapter

Summary

Currently, there is not a coordinated observational network for mercury (Hg) that could be used by the modelling community or for establishing recommendations for protecting human and environmental health on a global scale. Current national networks are inadequate as they lack (1) observations of all forms of Hg in the ambient air and in both wet and dry deposition; (2) long-term measurements of Hg and other air pollutants; (3) comprehensive monitoring sites in the free-troposphere; and (4) measurement sites that permit a careful investigation of inter-hemispheric transport and trends in background concentrations. Programs such as the World Meteorological Organization's Global Atmosphere Watch have made substantial efforts to establish data centers and quality control programs to enhance integration of air quality measurements from different national and regional networks, and to establish observational sites in under-sampled, remote regions around the world. Similarly, the International Global Atmospheric Chemistry project (of the International Geosphere-Biosphere Programme) has strongly endorsed the need for international exchange of calibration standards and has helped coordinate multinational field campaigns to address a variety of important issues related to global air quality. Following the lead of these programs and incorporation of a well-defined Hg monitoring component into the existing network sites would be the most expeditious and efficient approach. Close coordination of the global modelling community with the global measurement community would lead to major advances in the global models and advance our understanding of the Hg science while decreasing the uncertainties in global assessments for Hg.

Keywords

Emission Inventory Marine Boundary Layer National Atmospheric Deposition Program National Atmospheric Deposition Program Atmospheric Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.6 References

  1. Ariya P, Dastoor A, Amyot M, Schroeder W, Barrie L, Anlauf K, Raofie F, Ryzhkov A, Davignon D, Lalonde J, Steffen A. 2004. Arctic: A sink for mercury. Tellus, 56B: 397–403.Google Scholar
  2. Banic, S.T. Beauchamp, R.J. Tordon, W.H. Schroeder, A. Steffen, K.A. Anlauf and H.K.T. Wong, Vertical distribution of gaseous elemental mercury in Canada. J. Geophys. Res. 108 D9 (2003), p. 4264.CrossRefGoogle Scholar
  3. Bergan et al. (1999). L. Gallardo and H. Rodhe, Mercury in the global troposphere: a three-dimensional model study. Atmos. Environ. 33 (1999), pp. 1575–1585. CrossRefGoogle Scholar
  4. Bergan T. and H. Rodhe, Oxidation of elemental mercury in the atmosphere; constraints imposed by global scale modeling, Journal of Atmospheric Chemistry 40 (2001), pp. 191–212.CrossRefGoogle Scholar
  5. Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen (2000), Inverse modeling of the global CO cycle 1. Inversion of CO mixing ratios, J. Geophys. Res., 105(D2), 1909–1927.CrossRefGoogle Scholar
  6. Bey, I., D. Jacob, R. Yantosca, J. Logan, B. Field, A. Fiore, Q. Li, H. Liu, L. Mickley, and M. Schultz (2001), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23,073–23,096.Google Scholar
  7. Bullock and Brehme (2002). Atmospheric mercury simulation using the CMAQ model: formulation, description and analysis of wet deposition results. Atmos. Environ. 36 (2002), pp. 2135–2146.CrossRefGoogle Scholar
  8. Bullock, R. Jr., Benjey W.G. and Keating, M.H. (1997) The modeling of regional scale atmospheric mercury transport and deposition using RELMAP. In: J.E. Baker, Editor, Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters, SETAC, Pensacola, FL (1997), pp. 323–347.Google Scholar
  9. Bullock O.R., Brehme KA. 2002. Atmospheric mercury simulation using the CMAQ model: formulation, description, and analysis of wet deposition results. Atmospheric Environment; 36: 2135–2146. CrossRefGoogle Scholar
  10. Bullock O. R., (2007) Braverman T., Chapter 2.2 Application of the CMAQ mercury model for U.S. EPA regulatory support Developments in Environmental Sciences, Vol.6 pp. 85–95CrossRefGoogle Scholar
  11. A.P. Dastoor, Cloudiness parameterization and verification in a large-scale atmospheric model. Tellus 46A (1994), pp. 615–634.Google Scholar
  12. Dastoor AP, Larocque Y. 2004. Global circulation of atmospheric mercury: A modeling study. Atmos. Environ. 38, 147–161.CrossRefGoogle Scholar
  13. Daum, P. H., L. I. Kleinman, S. R. Springston, L. J. Nunnermacker, Y.-N. Lee, J. Weinstein-Lloyd, J. Zheng, and C. M. Berkowitz (2004), Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000), J. Geophys. Res., 109, D17306, doi:10.1029/2003JD004311.CrossRefGoogle Scholar
  14. Derwent, R. G., P.G. Simmonds, A.J. Manning and T.G. Spain, Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland, Atmos. Environ., 41, 9091–9098, 2007.CrossRefGoogle Scholar
  15. Driscoll, C.T., Han, Y.J., Chen, C.Y., Evers, D.C., Lambert, K.F., Holsen, T.M., Kamman, N.Dvonch, J.T., Graney, J.R., Marsik, F.J., Keeler, G.J., Stevens R.K. (1998) An investigation of source–receptor relationships for mercury in south Florida using event precipitation data. The Science of The Total Environment, Vol. 213, Issues 1-3, Pages 95–108CrossRefGoogle Scholar
  16. Dvonch, J.T., Graney, J.R., Keeler, G.J., and Stevens, R.K. Utilization of Elemental Tracers to Source Apportion Mercury in South Florida Precipitation. Environmental Science and Technology 33, 4522–4527. 1999.CrossRefGoogle Scholar
  17. Dvonch, J.T., Marsik, F.J. and Keeler, G.J. The Use of WSR-88D Radar Data for Source-Apportionment of Wet-Deposition Measurements from the 1995 SoFAMMS. Journal of Climate and Applied Meteorology. 1421-1435, 2005.Google Scholar
  18. Ebinghaus R, Slemr F. 2000. Aircraft measurements of atmospheric mercury over southern and eastern Germany. Atmos. Environ., 34(6): 895–903.CrossRefGoogle Scholar
  19. Ebinghaus, R, R.M. Tripathi, D. Wallshlager and S.E. Lindberg, Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scale. In: R. Ebinghaus et al. Mercury Contaminated Sites, Springer, New York (1999), pp. 1–50.Google Scholar
  20. Fitzgerald, W.F., Lamborg, C.H. and Hammerschmidt, C.R., 2007. Marine biogeochemical cycling of mercury. Chemical Reviews, 107(2): 641–662.CrossRefGoogle Scholar
  21. Friedli, H.R. et al., 2004. Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications. J. Geophys. Res.-Atmospheres, 109(D19).Google Scholar
  22. Frost G. J., et al. (2006), Effects of changing power plant NO x emissions on ozone in the eastern United States: Proof of concept, J. Geophys. Res., 111, D12306, doi:10.1029/2005JD006354.CrossRefGoogle Scholar
  23. Fu, T.-M., D. J. Jacob, P. I. Palmer, K. Chance, Y. X. Wang, B. Barletta, D. R. Blake, J. C. Stanton, and M. J. Pilling (2007), Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853.CrossRefGoogle Scholar
  24. Gardfeldt, K., and M. Jonsson, Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance, J. Phys. Chem. A. 107 (22); 4478–4482, 2003CrossRefGoogle Scholar
  25. Gildemeister, A.E., Keeler, G.J. and Graney, J.R. Source proximity reflected in spatial and temporal variability in particle and vapor phase Hg concentrations in Detroit, MI. Atmos. Environ. 38, 5227–5236. 2005.Google Scholar
  26. Hedgecock, I. M., Trunfio, A., Pirrone, N., Sprovieri, F. (2005) Mercury Chemistry in the MBL: Mediterranean Case and Sensitivity Studies Using the AMCOTS (Atmospheric Mercury Chemistry Over the Sea) Model. Atmospheric Environment, 39, 7217–7230.CrossRefGoogle Scholar
  27. Hedgecock, I.M., Pirrone, N., Trunfio, G., Sprovieri, F. (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. Journal of Geophysical Research, 111 (D20302), doi: 10.1029/2006JD007117.Google Scholar
  28. Horowitz, L. W., A. M. Fiore, G. P. Milly, R. C. Cohen, A. Perring, P. J. Wooldridge, P. G. Hess, L. K. Emmons, and J.-F. Lamarque (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.CrossRefGoogle Scholar
  29. Hoyer M, Burke J, Keeler G. 1995. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air Soil Poll., 80: 199–208.CrossRefGoogle Scholar
  30. Jaffe, D., H. Price, D. Parrish, A. Goldstein, and J. Harris (2003), Increasing background ozone during spring on the west coast of North America, Geophys. Res. Lett., 30(12), 1613, doi:10.1029/2003GL017024.CrossRefGoogle Scholar
  31. Keeler, G.J., Glinsorn, G., Pirrone, N., 1995 Particulate mercury in the atmosphere: Its significance, transport, transformations and sources. Water Air Soil Poll. 80, 159–168.CrossRefGoogle Scholar
  32. Keeler, G.J., Hoyer, M. 1997. Recent measurements of atmospheric mercury in the Great Lakes region. In: Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. (Baker JE, editor), SETAC Press, Pensacola, FL, USA, 477pp.Google Scholar
  33. Keeler, G.J. and Dvonch, J.T. Atmospheric Mercury: A Decade of Observations in the Great Lakes. In: Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures around the World. N. Pirrone and K. Mahaffey Eds. Kluwer Ltd. 2005.Google Scholar
  34. Keeler, G.J., Gratz, L. and Al-Wali, K. Influences on the Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont. Ecotoxicology, 14, 71–83. 2005.CrossRefGoogle Scholar
  35. Kellerhals, M., S. Beauchamp, W. Belzer, P. Blanchard, F. Froude, B. Harvey, K. McDonald, M. Pilote, L. Poissant, K. Puckett, B. Schroeder, A. Steffen and R. Tordon, Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 37 7 (2003), pp. 1003–1011.CrossRefGoogle Scholar
  36. Lamborg, C.H. et al., 2002. Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochemical Cycles, 16(4): art. no.-1104.Google Scholar
  37. Landis MS, Keeler, GJ. 1997. A critical evaluation of an automatic wet-only precipitation collector for mercury and trace element determinations. Environ. Sci. Technol. 31: 2610–2615.CrossRefGoogle Scholar
  38. Landis, M.S., Stevens, R.K., Schaedlich, F., Prestbo, E.M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 36, 3000–30009.CrossRefGoogle Scholar
  39. Lei, W., B. de Foy, M. Zavala, R. Volkamer, and L. T. Molina Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model, Atmos. Chem. Phys., 7, 1347–1366, 2007.Google Scholar
  40. Li, Q., D.J. Jacob, I. Bey, P.I. Palmer, B.N. Duncan, B.D. Field, R.V. Martin, A.M. Fiore, R.M. Yantosca, D.D. Parrish, P.G. Simmonds, and S.J. Oltmans, Transatlantic transport of pollution and its effects on surface ozone in Europe and North America, J.Geophys. Res., 107, doi: 10.1029/2001JD001422, 2002.Google Scholar
  41. Lin, C., Pehkonen, S.O., 1999. The chemistry of atmospheric mercury: a review. Atmos. Environ. 33, 2067–2079.CrossRefGoogle Scholar
  42. Lin, C-J., P. Pongprueksa, S. E. Lindberg, S. O. Pehkonen, D. Byun, C. Jang, Scientific uncertainties in atmospheric mercury models I: Model science evaluation, Atmos. Environ. 40 (2006) 2911–2928.CrossRefGoogle Scholar
  43. Lin, C-J., P. Pongprueksa, O.R. Bullock, S.E. Lindberg, S.O. Pehkonen, C. Jang, T. Braverman and T.C. Ho, Scientific uncertainties in atmospheric mercury models II: sensitivity analysis in the CONUS Domain, Atmos. Environ. 41 (2007), pp. 6544–6560.CrossRefGoogle Scholar
  44. Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J.T.: Temporal variability of mercury speciation in urban air, Atmos. Environ., 41, 1911–1923, 2007.CrossRefGoogle Scholar
  45. Logan L.A., et al., (1999), Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res., 104, D21, 26373–26399.CrossRefGoogle Scholar
  46. Lynam, M.M. and Keeler, G.J. Automated speciated mercury measurements in Michigan, Environ. Sci. Technol. 39, 3289–3299, 2005.CrossRefGoogle Scholar
  47. Mason, R.P., Fitzgerald, W.F. and Morel, F.M.M., 1994. The aquatic biogeochemistry of elemental mercury. Geochim. Cosmochim. Acta, 58: 3191–3198.Google Scholar
  48. Mason, R.P. and Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4): art. no.-1093.Google Scholar
  49. Mason, R.R. et al., 2005. Monitoring the response to changing mercury deposition. Environ. Sci. Technol., 39(1): 14A–22A.CrossRefGoogle Scholar
  50. Miller, E.K., Van Arsdale, A., Keeler, G. J., Chalmers, A. Poissant, L. and Kammen, N. Estimation and Mapping of Wet and Dry Mercury Deposition Across Northeastern North America. Ecotoxicology, 14, 53–70. 2005.CrossRefGoogle Scholar
  51. Müller, J.F. and T Stavrakou (2005), Inversion of CO and NOx emissions, Atmos. Chem. Phys., 5, 1157–1186.CrossRefGoogle Scholar
  52. Munthe, J., Wangberg, I., Pirrone, N., Iverfeld, A., Ferrara, R., Ebinghaus, R., Feng., R., Gerdfelt, K., Keeler, G.J., Lanzillotta, E., Lindberg, S.E., Lu, J. (2001). Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmospheric Environment.Vol. 35, 3007–3017.CrossRefGoogle Scholar
  53. Munson, C., R.K., 2007. Mercury contamination in remote forest and freshwater ecosystems in the northeastern U.S.: sources, transformations and management options. BioScience 57 (1)Google Scholar
  54. Olson, J. R., J. H. Crawford, G. Chen, W. H. Brune, I. C. Faloona, D. Tan, H. Harder, and M. Martinez (2006). A reevaluation of airborne HOx observations from NASA field campaigns, J. Geophys. Res., 111, D10301, doi:10.1029/2005JD006617.CrossRefGoogle Scholar
  55. Oltmans, S.J., et al., (2006), Long-term changes in tropospheric ozone, Atmos. Environ., 40, 3156–3173.CrossRefGoogle Scholar
  56. Parrish, D. D., et al. (2004), Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions, J. Geophys. Res., 109, D23S18, doi:10.1029/2004JD004978.CrossRefGoogle Scholar
  57. Pai, P. P. Karamchandani and C. Seigneur, Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model. Atmos. Environ. 31 (1997), pp. 2717–2732.CrossRefGoogle Scholar
  58. Parrish, D. D., J. S. Holloway, M. Trainer, P. C. Murphy, G. L. Forbes, and F. C. Fehsenfeld. Export of North American ozone pollution to the North Atlantic Ocean. Science, 259, 1436–1439, 1993.CrossRefGoogle Scholar
  59. Pirrone, N., G. J. Keeler, I. Allegrini (1996). Particle size distributions of atmospheric mercury in urban and rural areas. Journal of Aerosol Science,Vol. 27, Suppl. 1,1996, pp.S13–S14.CrossRefGoogle Scholar
  60. Pleijel K. and J. Munthe, Modelling the atmospheric mercury cycle-chemistry in fog droplet, Atmospheric Environment 29 (1995), pp. 1441–1457.CrossRefGoogle Scholar
  61. Pongprueksa, P., C-J. Lin, S.E. Lindberg, C. Jang, T. Braverman, O.R. Bullock, T.C. Ho and H-W. Chu, Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism, Atmos. Environ., 2007, in press, doi:10.1016/j.atmosenv.2007.11.020.Google Scholar
  62. Poissant L., Pilote, M., Beauvais, C., Constant, P., Zhang, H.H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM, and Hgp) in southern Quebec, Canada. Atmos. Environ. 39, 1275–1287.CrossRefGoogle Scholar
  63. Prospero, J. M., D. L. Savoie, and R. Arimoto, (2003), Long-term record of nss-sulfate and nitrate in aerosols on Midway Island, 1981–2000: Evidence of increased (now decreasing?) anthropogenic emissions from Asia, Journal Geophysical Research 108(D1),4019, doi:10.1029/ 2001JD001524.CrossRefGoogle Scholar
  64. Rea, A.W., S.E. Lindberg and G.J. Keeler, Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmos. Environ. 35 (2001), pp. 3453–3462.CrossRefGoogle Scholar
  65. Ren, X., et al. (2006), OH, HO2, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002 campaign: Observations and model comparison, J. Geophys. Res., 111, D10S03, doi:10.1029/2005JD006126.CrossRefGoogle Scholar
  66. Roberts, J. M. et al., (2004), Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment, J. Geophys. Res., 109(D23S21), doi: 10.1029/2004JD004960.Google Scholar
  67. Savoie, D.L., R. Arimoto, W.C. Keene, J.M. Prospero, R.A. Duce and J.N. Galloway, (2002), Marine biogenic and anthropogenic contributions to non-sea-salt-sulfate in the marine boundary layer over the North Atlantic, J. Geophys. Res., 107, 4356, doi:1029/2001JD000970.CrossRefGoogle Scholar
  68. Schroeder, W.H., Munthe, J., 1998. Atmospheric mercury --- an overview. Atmos. Environ. 32, 809–822.CrossRefGoogle Scholar
  69. Schroeder, W.H. K.G. Anlauf, L.A. Barrie, J.Y. Lu, A. Steffen, D.R. Schneeberger and T. Berg, (1998) Arctic springtime depletion of mercury. Nature 394 (1998), pp. 331–332.CrossRefGoogle Scholar
  70. Seigneur C, Karamchandani P, Lohman K, Vijayaraghavan K, Shia R.-L. 2001. Multiscale modeling of the atmospheric fate and transport of mercury. J. Geophys. Res. 106(D21), 27,795–27,809.CrossRefGoogle Scholar
  71. Selin, NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaegle L, Jaffe D. 2007. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. . J. Geophys. Res , 112: D02308, doi:10.1029/2006JD007450.CrossRefGoogle Scholar
  72. Selin, N.E. et al., 2008. Global 3-D land-ocean-atmosphere model for mercury: present-day vs. preindustrial cycles and anthropogenic enhancement factors for deposition. Global Biogeochem. Cycles, Accepted.Google Scholar
  73. Shia RL, Seigneur C, Pai P, Ko M, Sze ND. 1999. Global simulation of atmospheric mercury concentrations and deposition fluxes. . J. Geophys. Res , 104(D19), 23,747–23,760.CrossRefGoogle Scholar
  74. Sheu G, Lee C, Lin N. 2007. Measurements of atmospheric mercury at a high elevation site (Lulin Atmospheric Background Station, LABS). Abstract A53C-1350, AGU Fall meeting, San Francisco, 2005.Google Scholar
  75. Sillman, S., D. He, M. Pippin, P. Daum, L. Kleinman, J. H. Lee and J. Weinstein-Lloyd. Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements: implications for VOC-NOx sensitivity. J. Geophys. Res. 103, 22629–22644, 1998.CrossRefGoogle Scholar
  76. Sillman, S., F. J. Marsik, K. I. Al-Wali, G J. Keeler, and M. S. Landis (2007), Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern United States, and the Atlantic Ocean, J. Geophys. Res., 112, D23305, doi:10.1029/2006JD008227.CrossRefGoogle Scholar
  77. Simmonds P., R. Derwent, A. Manning, and G. Spain, (2004), Significant growth in surface ozone at Mace Head, Ireland, 1987–2003, Atmos. Environ., 38(28), 4769–4778.CrossRefGoogle Scholar
  78. Slemr, F. et al., 2003. Worldwide trend of atmospheric mercury since 1977. Geophys. Res. Lett., 30(10).Google Scholar
  79. Slemr (1992). F. Slemr and E. Langer, Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature 355 (1992), pp. 434–437.CrossRefGoogle Scholar
  80. Slemr et al (1995). F. Slemr, W. Junkermann, R.W.H. Schmidt and R. Sladkovic, Indication of change in global and regional trends of atmospheric mercury concentrations. Geophysical Research Letters 22 (1995), pp. 2143–2146.CrossRefGoogle Scholar
  81. Stevens, R. K.; Zweidinger, R.; Edgerton, E.; Mayhew, W.; Kellog, R.; Keeler, G. Source Characterization in Support of Modeling the Transport of Mercury Emissions in South Florida. Presented at Measurement of Toxic and Related Air Pollutants Symposium, May 7-9, Research Triangle Park, NC, 1996. (25) Dzubay, T.; Stevens, R.; Lewis, C.; Hern, D.; Courtney, W.; Tesch,Google Scholar
  82. Streets, D.G., Q. Zhang, L. Wang, K. He, J. Hao, Y. Wu, Y. Tang, and G.R. Carmichael (2006), Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111, D14306.CrossRefGoogle Scholar
  83. Strode, S.A. et al., 2008. Trans-Pacific transport of mercury. J. Geophys. Res.-Atmospheres, 113 (D15).Google Scholar
  84. Sunderland, E.M. and Mason, R.P., 2007. Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles, 21: GB4022, doi:10.1029/2006GB002876.CrossRefGoogle Scholar
  85. Swartzendruber, P.C. et al., 2008. Vertical distribution of mercury, CO, ozone, and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEX-B campaign. J.Geophys. Res.-Atmospheres, 113 (D10).Google Scholar
  86. Talbot, R., Mao, H., Scheuer, E., Dibb, J. and Avery, M., 2007. Total depletion of Hg degrees in the upper troposphere-lower stratosphere. Geophys. Res. Lett., 34 (23).Google Scholar
  87. Task Force on Hemispheric Transport of Air Pollution (TF-HTAP), Hemispheric Transport of Air Pollution 2007, United Nations Economic Commission for Europe, Air Pollution Studies No. 16, Report number ECE/EB.AIR/94, 2007. Available at www.htap.org/activities/2007 _interim_report/HTAP 2007 EB version.pdf
  88. Trainer, M., D. D. Parrish, M. P. Buhr, R. B. Norton, F. C. Fehsenfeld, K. G. Anlauf, J. W. Bottenheim, Y.Z. Tang, H.A. Wiebe, J.M. Roberts, R.L. Tanner, L. NewmanCorrelation of ozone with NOy in photochemically aged air. J. Geophys. Res., 98, 2917–2926, 1993.CrossRefGoogle Scholar
  89. U.S. Environmental Protection Agency. Mercury Study Report to Congress; EPA-452/R-97-003; Office of Air Quality Planning and Standards, Office of Research and Development, U.S. Government Printing Office: Washington, DC, 1998.Google Scholar
  90. VanArsdale, A., Weiss, J., Keeler, G.J. and Miller, E. Patterns of mercury deposition in northeastern North America (1996-2002). Ecotoxicology, 14, 84–101. 2005.CrossRefGoogle Scholar
  91. Weiss-Penzias, P., D. A. Jaffe, P. Swartzendruber, J. B. Dennison, D. Chand, W. Hafner, and E. Prestbo, Observations of Asian air pollution in the free troposphere at Mt. Bachelor Observatory in the spring of 2004, J. Geophys. Res., 110, D10304, doi:10.1029/2005JD006522, 2006.CrossRefGoogle Scholar
  92. Weiss-Penzias, P., D. A. Jaffe, P. Swartzendruber, W. Hafner, D. Chand, and E. Prestbo, Quantifying Asian biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Article In-Press, Atmos. Environ., February 2007.Google Scholar
  93. Woods JS, Martin MD, Naleway CA, Echeverria D. Urinary porphyrin profiles as a biomarker of mercury exposure: studies in dentists with occupational exposure to mercury vapor. J Toxicol Environ Health. 1993;40:235–246.CrossRefGoogle Scholar
  94. Yantosca B. 2005. GEOS-Chem v7-03-06 User's Guide, Atmospheric Chemistry Modeling Group, Harvard University, Cambridge, MA, posted 8 November 2005 at www.as.harvard.edu/chemistry/trop/geos/doc/man/index.html.Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Gerald J. Keeler
    • 1
  • Nicola Pirrone
    • 2
  • Russel Bullock
    • 3
  • Sanford Sillman
    • 4
  1. 1.Department of Environmental Health SciencesUniversity of MichiganAnn ArborUSA
  2. 2.CNR-Institute for Atmospheric PollutionRomeItaly
  3. 3.NOAA, Air Resources LaboratoryUSA
  4. 4.University of MichiganDep. Atmospheric SciencesUSA

Personalised recommendations