Spatial coverage and temporal trends of over-water, air-surface exchange, surface and deep sea water mercury measurements

  • Francesca Sprovieri
  • Nicola Pirrone
  • Robert P. Mason
  • Maria Andersson


The world's oceans and seas are both sources and sinks of mercury, and although it appears that the atmosphere is the major transport/distribution medium for mercury, because most Hg emissions are to the atmosphere, oceans and seas also play an important role. The transformations of Hg and its compounds which take place in marine water are of crucial importance to the understanding of the way in which mercury released to the atmosphere is eventually incorporated into biota, thereby becoming a risk to human and ecosystem well being. This chapter provides an overview of where and when measurements of atmospheric and aquatic concentrations of mercury and its compounds have been made in the marine environment. These measurements cover – in part obviously – the Pacific, Atlantic, Southern and Arctic oceans, North and Baltic Seas and the Mediterranean,. There are relatively few direct measurements of the air-sea exchange of mercury, however simultaneous measurements of Dissolved Gaseous Hg (DGM) and Hg in air, when combined with measurements of the sea and air temperature and wind speed, can be used to estimate the evasion and deposition fluxes. The magnitude of these fluxes is one of the indispensable parameters in compartmental and atmospheric Hg models. There remains some uncertainty as a result of the, so far, limited spatial and temporal coverage of the measurements.


Arctic Ocean Atmospheric Environment Mercury Species Equatorial Pacific Ocean Atmospheric Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.5 References

  1. Allard, B., Arsenie, I., 1991. Abiotic reduction of mercury by humic substances in aquatic systems-an important process for the mercury cycle. Water, Air and Soil Pollution 56, 457–464.CrossRefGoogle Scholar
  2. AMAP, 2005. AMAP assessment 2002: Heavy metals in the Arctic. Arctic Monitoring and Assessment program (AMAP), Oslo, Norway. Xvi + 265 ppGoogle Scholar
  3. Amyot, M. et al. 1997. Environmental Science and Technology; 31: 3606–3611.CrossRefGoogle Scholar
  4. Amyot, M., Southworth, G., Lindberg, S., Hintelmann, H., Lalonde, J., Ogrinc, N., Poulain, A., Sandilands, K., 2004. Formation and evasion of dissolved gaseous mercury in large enclosures amended with 200HgCl2. Atmospheric Environment 38, 4279–4289.CrossRefGoogle Scholar
  5. Andersson, M., Gardfeldt, K., Wangberg, I., Sprovieri, F., Pirrone, N., O. Lindqvist (2007) Seasonal and daily variation of mercury evasion at coastal and off-shore sites at the Mediterranean Sea. Marine Chemistry, Vol.104, pp.214–226.CrossRefGoogle Scholar
  6. Andersson, M. 2008, Transport of Mercury Species in the Environment, Exchange between Oceanic Waters and the Atmosphere. ISBN 978-91-628-7391-2Google Scholar
  7. Andersson, M.E., Sommar, J., Gardfeldt, K., Lindqvist, O., 2008, Enhanced concnetrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. In press, Marine Chemistry, doi:10.1016/j.marchem.2008.04.002Google Scholar
  8. Aspmo, K., Temme, C., berg, T., Ferrari, C., Gauchard, P.-A., Fain, X., Wibetoe, G. 2006. Mercury in the Atmosphere, Snow and Melt Water Ponds in the North Atlantic Ocean during Arctic Summer. Environmental Science and Technology, 40, 4083–4089CrossRefGoogle Scholar
  9. Baeyens, W., Leermakers, M., Dedeurwaerder, H., Lansens, P., 1991. Modelization of the mercury fluxes at the air–sea interface. Water, Air and Soil Pollution 56, 731–744.CrossRefGoogle Scholar
  10. Baeyens, W. andLeermakers, M., 1998. Elemental mercury concentrations and formation rates in the Scheldt estuary and the North Sea. Marine Chemistry, 60, 257–266CrossRefGoogle Scholar
  11. Barkay, T., Gillman, M., Turner, R.R., 1997. Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied Environmental Microbiology 63, 4267–4271.Google Scholar
  12. Capri, A., Lindberg, S., 1998. Application of a Teflon dynamic flux chamber for quantifying soil mercury fluxes: test and results over background soil. Atmospheric Environment 32, 873–882.CrossRefGoogle Scholar
  13. Compeau, G.C., Bartha, R., 1987. Effects of salinity on mercury methylating activity of sulphate-reducing bacteria in estuarine sediments. Applied Environmental Microbiology 53, 261–265.Google Scholar
  14. Coquery, M., Cossa, D., 1995. Mercury speciation in surface waters of the North Sea. Netherlands Journal of Sea Research, 34, 245–257CrossRefGoogle Scholar
  15. Coquery, M., Cossa, D., Martin, J.M., 1995. The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent Arctic coastal waters. Water, Air and Soil Pollution, 80, 653–664CrossRefGoogle Scholar
  16. Cossa, D., Michel, P., Noel, J., Auges, D., 1992, Vertical Profile of total mercury in relation to arsenic, cadmium and copper distributions at the Easter North Atlantic ICES reference station. Oceanologica Acta 15, 603–308Google Scholar
  17. Cossa, D., Martin, J.-M., Sanjuan, J., 1994, Dimethylmercury formation in the Alboran Sea. Marine Pollution Bulletin, 28, 381–384CrossRefGoogle Scholar
  18. Cossa, D., Martin, J.-M., Takayanagi, K., Sanjuan, J., 1997. The distribution and cycling of mercury species in the western Mediterranean. Deep-Sea Research II 44, 721–740.CrossRefGoogle Scholar
  19. Cossa, D., Coquery, M., 2005. The Mediterranean mercury anomaly, a geochemical or a biological issue. Hdb. Env. Chem., vol. 5. Springer-Verlag, Heidelberg. Google Scholar
  20. Costa, M., Liss, P., 1999. Photoreduction of mercury in sea water and its possible implications for Hg0 air–sea fluxes. Marine Chemistry 68, 87–95.CrossRefGoogle Scholar
  21. Dalziel, J.A., Yeats, P., 1985, Reactive mercury in the central North Atlantic. Marine Chemistry, 15, 357–361.CrossRefGoogle Scholar
  22. Dalziel, J.A., 1992, Reactive mercury on the Schotian Shelf and in adjacent northwest Atlantic Ocean. Marine Chemistry, 37, 171–178CrossRefGoogle Scholar
  23. Dalziel, J.A., 1995. Reactive mercuryin the eastern North Atlantic and southern Atlantic. Marine Chemistry 49, 307–314.CrossRefGoogle Scholar
  24. Dvonch, J.T., Graney, J.R., Marsik, F.J., Keeler, G.J., Stevens, R.K., 1999. An investigation of source–receptor relationships for mercury in south Florida using event precipitation data. Science of the Total Environment 213, 95–108.CrossRefGoogle Scholar
  25. Ebinghaus, R., Jennings, S.G., Schroeder, W.H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D., Xiao, Z., 1999. International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmospheric Environment 33, 3063–3073.CrossRefGoogle Scholar
  26. Ebinghaus, R., Tripathi, R.M., Wallschlager, D., Lindberg, S.E., 1999b. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales. In:Ebinghaus, R., Turner, R.R., de Lacerda, L.D., Vasiliev, O. (Eds.),Mercury Contaminated Sites. Springer, Berlin, pp.1–50.Google Scholar
  27. Ebinghaus R., Temme C. H., Kock H. H., Loewe A., and Schmolke S. R. (2000). Determination of surface level concentrations of atmospheric mercury in Antarctica. Proceedings of International Conference on Heavy Metals in the Environment, Ann Arbor, MI, August 2000.Google Scholar
  28. Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G., Jennings, S.G., Temme, Ch., 2002b. Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmospheric Environment 36, 5267–5276.CrossRefGoogle Scholar
  29. Engstrom, D. R. et al. 1994. In: Environmental Chemistry of Lakes and Reservoirs. L. A. Baker (ed.). American Chemical Society. pp. 33-66.Google Scholar
  30. Expert Panel on Hg Atmospheric Processes. 1994. Electric Power Research Institute Report No. TR-104214.Google Scholar
  31. FAO, 1986. FAO Fisheries Report No. 325, Supplement, FIPL/R325, Meeting on the Biogeochemical Cycle of Mercury in the Mediterranean, Sienna, Italy, 1984. FAO, Rome, 1986.Google Scholar
  32. Ferrara, R., Mazzolai, B. (1998) A dynamic flux chamber to measure mercury emission from aquatic systems. Sci Total Environ, 215: 5–57.CrossRefGoogle Scholar
  33. Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N. (2000) Temporal trends in gaseous mercury evasion from the Mediterranean seawaters. Sci Total Environ, 259: 183–190.CrossRefGoogle Scholar
  34. Ferrara, R., Lanzillotta, E., Ceccarini, C. (2001) Dissolved gaseous mercury concentration and mercury evasional flux from seawater in front of a chlor-alkali plant. Environ. Technol, 22: 971–978.CrossRefGoogle Scholar
  35. Ferrara, R., Ceccarini, C., Lanzillotta, E., Gardfeldt, K., Sommar, J., Horvat, M., Logar, M., Fajon, V., Kotnik, J., 2003. Profiles of dissolved gaseous mercury concentration in Mediterranean Sea water. Atmospheric Environment 37 (S1), S85–S92.CrossRefGoogle Scholar
  36. Fitzgerald, W.F., Gill, G.A. andKim, J.P. (1984) An equatorial Pacific Ocean source of atmospheric mercury. Science 224, 591–599.CrossRefGoogle Scholar
  37. Fitzgerald, W.F., 1989. Atmospheric and oceanic cycling of mercury. In:Riley, J.P., Chester, R. (Eds.),Chemical Oceanography, vol. 10. Academic Press, London, pp.151–186.Google Scholar
  38. Fitzgerald, W.F., 1995. Is mercury increasing in the atmosphere? The need for an atmospheric mercury network (AMNET). Water, Air and Soil Pollution 80, 245–254.CrossRefGoogle Scholar
  39. Fitzgerald, W.F., Mason, R.P., 1997. Biogeochemical cycling of mercury in the marine environment. In:Sigel, A., Sigel, H. (Eds.),Mercury and its effects on environment and biology. Marcel Dekker, New York, pp.53–111.Google Scholar
  40. Fitzgerald, W. F. et al. 1998. Environmental Science and Technology; 32: 1–7.CrossRefGoogle Scholar
  41. Gardfeldt, K., Feng, X., Sommar, J., Lindqvist, O., 2001a. Total gaseous mercury exchange between air and water over lake and sea surfaces. Atmospheric Environment 35, 3027–3038.CrossRefGoogle Scholar
  42. Gardfeldt, K., Sommar, J., Stromberg, D., Feng, X., 2001b. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of MeHg species in the aqueous phase. Atmospheric Environment 35, 3039–3047.CrossRefGoogle Scholar
  43. Gardfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E., Munthe, J., Wangberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F., Pesenti, E. (2003) Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment. Vol.37-S1, 73–84.CrossRefGoogle Scholar
  44. Gill, G.A., Fitzgerald, W.F., 1985, Mercury sampling of open ocean waters at the picomolar level. Deep-Sea Research, 32, 287–297CrossRefGoogle Scholar
  45. Gill, G.A., Fitzgerald, W.F., 1988, Vertical mercury distribution in the Oceans. Geochimica et Cosmochimica Acta, 52, 1719–1728CrossRefGoogle Scholar
  46. Gill, G.A., Fitzgerald, W.F., 1987, Mercury in the surface waters of the open ocean. Global Biogeochemical Cycles, 3, 199–212CrossRefGoogle Scholar
  47. Guentzel, J.L., Landing, W.M., Gill, G.A., Pollman, C.D., 1995. Atmospheric deposition of mercury in Florida: the FAMS project (1992–1994). Water, Air and Soil Pollution 80, 393–402.CrossRefGoogle Scholar
  48. Guentzel, J.L., Landing, W.M., Gill, G.A., Pollman, C.D., 2001. Processes influencing rainfall deposition of mercury in Florida: the FAMS project (1992–1996). Environmental Science and Technology 35, 863–873.CrossRefGoogle Scholar
  49. Gvirtzman, Z., Nur, A., 2001. Residual topography, lithospheric structure and sunken slabs in the central Mediterranean. Earth and PlanetaryScience Letters 187, 117–130.CrossRefGoogle Scholar
  50. Hall, B. 1995. The phase oxidation of elemental mercury by ozone. Water, Air and Soil Pollution, 80, 301–315.CrossRefGoogle Scholar
  51. Hines, M.E., Horvat, M., Faganeli, J., Bonzongo, J.-C.J., Barkey, T., Major, E.B., Scott, K.J., Bailey, E.A., Warwick, J.J., Lyons, W.B., 2000. Mercury biogeochemistry in the Idrija River, Slovenia, from above the Mine into the Gulf of Trieste. Environmental Research 83, 129–139.CrossRefGoogle Scholar
  52. Hines, M.E., Horvat, M., Faganeli, J., 2001. MeHg formation and degradation in sediments of the Gulf of Trieste. RMZ—Materials and Geoenvironment 48, 157–164.Google Scholar
  53. Hedgecock, I.M. andPirrrone, N. 2001. Mercury and photochemistry in the marine boundary layer-modelling studies suggest the in situ production of reactive gas phase mercury. Atmos. Env. 35, 3055–3062.CrossRefGoogle Scholar
  54. Hedgecock, I.M. andPirrrone, N. (2004) Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg0(g) in the Marine Boundary Layer at Various Latitudes, Env. Sci. Technol., 38, 69–76.CrossRefGoogle Scholar
  55. Hedgecock, I.M. andPirrrone, N. (2005) Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, Atmos. Environ., 39, 7217–7230.CrossRefGoogle Scholar
  56. Hedgecock, I.M., Pirrone, N.,Trunfio, G.A. and Sprovieri, F. (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. Journal of Geophysical Research, 111 (D20302), doi: 10.1029/2006JD007117.Google Scholar
  57. Horvat, M., Bloom, N.S., Liang, L., 1993a. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in lowlevel environmental samples. Part I: sediments. Analytica Chimica Acta 281, 135–152.CrossRefGoogle Scholar
  58. Horvat, M., Bloom, N.S., Liang, L., 1993b. Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in lowlevel environmental samples. Part II: water. Analytica Chimica Acta 282, 153–168.CrossRefGoogle Scholar
  59. Horvat, M., Liang, L., Azemard, S., Mandic, V., Coquery, M., Villeneuve, J.-P., 1997. Certification of total mercury and MeHg concentrations in Mussel Homogenate (Mytilus edulis) reference material. Fresenius Journal of Analytical Chemistry 358, 411–418.CrossRefGoogle Scholar
  60. Horvat, M., Kotnik, J., Fajon, V., Logar, M., Zvonaric, T., Pirrone, N., 2001. Speciation of mercury in waters of the Mediterranean Sea. Materials and Geoenvironment 48, 24–252.Google Scholar
  61. Horvat, M., Kotnik, J., Fajon, V., Logar, M., Zvonaric, T., Pirrone, N. (2003) Speciation of Mercury in Surface and Deep-Sea waters in the Mediterranean Sea. Atmospheric Environment, Vol.37/S1 ,93–108.CrossRefGoogle Scholar
  62. Kahle, H.-G., Mueller, S., 1998. Structure and dynamics of the Eurasian–African/Arabian plate boundary system: objectives, tasks and resources of the WEGENER group. Journal of Geodynamics 25, 303–325.CrossRefGoogle Scholar
  63. Katz, E.J., 1972. The Levantine Intermediate water between the straight of Sicilyand the straight of Gibraltar. Deep-Sea Research II 19, 507–520.Google Scholar
  64. Kotnik, J., Horvat, M., Tessier, E., Ogrinc, N., Monperrus, M., Amouroux, D., Fajon, V., Gibicar, D., Zizek, S., Horvat, N., Sprovieri, F., Pirrone, N. (2007). Mercury speciation in surface and deep waters of the Mediterranean Sea. Marine Chemistry Vol.107, 13–30.CrossRefGoogle Scholar
  65. Kim, J.P., Fitzgerald, W.F., 1986. Air portioning of mercury in the Tropical Pacific Ocean. Science 23, 1131–1133.CrossRefGoogle Scholar
  66. Kinder, T.H., Parrilla, G., 1987. Yes, some of the Mediterranean outflow does come from great depth. Journal of Geophysical Research 92, 2901–2906.CrossRefGoogle Scholar
  67. Kim, J., Fitzgerald, W., 1988. Gaseous mercury profiles in the tropical Pacific Ocean. Geophysical Research Letters 15 (1), 40–43.CrossRefGoogle Scholar
  68. Kim, K.H., Lindberg, S., 1995. Design and initial tests of dynamic enclosure chamber for measurements of vapour-phase mercury fluxes over soils. Water, Air and Soil Pollution 80, 1059–1068.CrossRefGoogle Scholar
  69. Kim, K.H., Lindberg, S.E., Meyers, T.P., 1995. Micrometeorological measurements of mercury vapour fluxes over background forest soils in eastern Tennessee. Atmospheric Environment 29, 267–282.CrossRefGoogle Scholar
  70. Kuss, J., Schneider, B. 2007. Variability of the Gaseous Elemental Mercury Sea–Air Flux of the Baltic Sea. Environmental Science and Technology, 41, 8018–8023CrossRefGoogle Scholar
  71. IARC, 1994. Monographs on the Evaluation of Carcinogenic Risk to Humans, Mercury and Mercury Compounds. Vol. 58. Lyon.Google Scholar
  72. Iverfeldt, A., 1991a. Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water, Air, and Soil Pollution 56, 553–564.CrossRefGoogle Scholar
  73. Iverfeldt, A., 1991b. Occurrence and turnover of atmospheric mercury over the Nordic Countries. Water Air and Soil Pollution 56, 251–265.CrossRefGoogle Scholar
  74. Lamborg, C.H., Fitzgerald, W.F., Vandal, G.M., Rolfhus, K.R., 1995. Atmospheric mercury in northern Wisconsin: sources and species. Water, Air and Soil Pollution 80, 189–198.CrossRefGoogle Scholar
  75. Lamborg, C.H., Rolfhus, K.R., Fitzgerald, W.F., Kim, G., 1998. The atmospheric cycling and air–sea exchange of mercury species in the South and equatorial Atlantic. Deep-Sea Research II 46, 957–977.CrossRefGoogle Scholar
  76. Lamborg, C.H., Rolfhus, K.R., Fitzgerald, W.F., Kim, G., 1999. The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean. Deep Sea Research II, 46, 957–977CrossRefGoogle Scholar
  77. Lamborg, C.H., Rolfhus, K.R., Fitzgerald, W.F., Kim, G. (2002), A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients, Geochim. Cosmochim. Acta, 66, 1105–1118.CrossRefGoogle Scholar
  78. Landis, M.S., Stevens, R.K., Schaedlich, F., Prestbo, E.M., 2002. Development and characterisation of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environmental Science and Technology 36, 3000–3009.CrossRefGoogle Scholar
  79. Lanzillotta, E., Ferrara, R., 2001. Daily trend of dissolved gaseous mercury concentration in coastal seawater of the Mediterranean basin. Chemistry 45, 935–940.CrossRefGoogle Scholar
  80. Laurier, F.J.G., Mason, R.P., Whalin, L., Kato, S., 2003. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry. Journal of Geophysical Research 108 (D17) (art. no. 4529).Google Scholar
  81. Laurier, F.J.G., Mason, R.P., Gill, G.A., andWhalin, L. (2004), Mercury distributions in the North Pacific Ocean: 20 years of observations, Mar. Chem., 90, 3–19.CrossRefGoogle Scholar
  82. Laurier, F. and R.P. Mason. 2007. Mercury concentration and speciation in the coastal and open ocean boundary layer. JGR-Atmos. 112, D06302, doi: 10.1029/2006JD007320.Google Scholar
  83. Leermakers, M., Meuleman, C., Baeyens, W., 1995. Mercury speciation in the Scheldt estuary. Water, Air and Soil Pollution 80, 641–652.CrossRefGoogle Scholar
  84. Leitch, D.R., Carrie, J., Lean, D., Macdonald, R.W., Stern, G.A., Wang, F., 2007. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Science of the Total Environment, 373, 178–195CrossRefGoogle Scholar
  85. Lindberg, S.E., Kim, K.-H., Meyers, T.P., Owens, J.G., 1995a. Micrometeorological gradient approach for quantifying air– surface exchange of mercury-vapour tests over contaminated soils. Environmental Science and Technology 29, 126–135.CrossRefGoogle Scholar
  86. Lindberg S. E., Brooks S., Lin C.-J., Meyers T., and Chambers L. (2000) The Barrow Arctic Mercury Study (BAMS): Recent measurements of the production of reactive gaseous mercury durino mercury depletion events at Point Barrow, Alaska. Proceedings of International Conference on Heavy Metals in the Environment, Ann Arbor, MI, August 2000.Google Scholar
  87. Lindberg, S.E., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Presto, E. andSeigneur, C. (2007). A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, Vol.36, 19–32.CrossRefGoogle Scholar
  88. Mason, R.P., Fitzgerald, W.F., 1990. Alkylmercury species in the equatorial Pacific. Nature 347, 457–459.CrossRefGoogle Scholar
  89. Mason, R.P., Fitzgerald, W.F., 1991. Mercury speciation of open ocean waters. Water, Air, and Soil Pollution 56, 779–789.CrossRefGoogle Scholar
  90. Mason, R.P., Fitzgerald, W.F., 1993. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Research II 40 (9), 1897–1924.CrossRefGoogle Scholar
  91. Mason, R.P., Fitzgerald, W.F., Morel, M.M., 1994. The biological cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58, 3191–3198.CrossRefGoogle Scholar
  92. Mason, R.P., Fitzgerald, W.F., Morel, F.M.M., 1994a. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58 (15), 3191–3198.CrossRefGoogle Scholar
  93. Mason, R., O'Donnell, J., Fitzgerald, W., 1994b. Elemental mercury cycling within the mixed layer of the Equatorial Pacific Ocean. In:Watras, C., Huckabee, J. (Eds.),Pollution Integration and Synthesis. Lewis Publishers, Boca Raton, pp.83–97.Google Scholar
  94. Mason, R.P. et al. 1995. Water, Air and Soil Pollution; 80: 775–787.CrossRefGoogle Scholar
  95. Mason, R.P., Morel, F.M.M., Hemond, H.F., 1995a. The role of microorganisms in elemental mercury formation in natural waters. Water, Air and Soil Pollution 80, 775–789.CrossRefGoogle Scholar
  96. Mason, R.P., Rolfhus, K.R., Fitzgerald, W.F., 1995b. Methylated and elemental mercury in the surface and deep ocean waters of the North Atlantic. Water, Air and Soil Pollution 80, 665–677CrossRefGoogle Scholar
  97. Mason, R.P., Rolfhus, K.R., Fitzgerald, W.F., 1998. Mercury in the North Atlantic. Marine Chemistry, 61, 37–53 CrossRefGoogle Scholar
  98. Mason, R.P., Sullivan, A.R., 1999. The distribution and speciation of mercury in the South and Equatorial Atlantic. Deep Sea Research II, 46, 937–956CrossRefGoogle Scholar
  99. Mason, R.P., Lawson, N.M., Sheu, G.-R., 2000. Annual and seasonal trends in mercury deposition in Maryland. Atmospheric Environment 34, 1691–1701.CrossRefGoogle Scholar
  100. Mason, R.P., Lawson, N.M., Sheu, G.-R. 2001. Mercury in the Atlantis Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Res. II. 48, 2829–2853.CrossRefGoogle Scholar
  101. Mason, R.P., Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Global and Biochemistry Cycles 16 (4) (art. no.-1093).Google Scholar
  102. Mason, R.P., Gill, G.A., 2005. Mercury in the marine Environment, in: Parsons, M. B., Percival, J. B. (Eds.), Mineralogical Association of Canada Short Course 34, Mercury : Sources, Measurements, Cycles and Effects, Halifax, Chapter 10 pp 179-216Google Scholar
  103. Mierle, G. 1990. Environ. Toxicol. Chem.; 9: 843–851.CrossRefGoogle Scholar
  104. Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., Donard, O., 2007. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry 107, 49–63CrossRefGoogle Scholar
  105. Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecologyand Systematics 29, 543–566.CrossRefGoogle Scholar
  106. Munthe, J., 1991. The redox cycling of mercury in the atmosphere. Ph.D. Thesis, Department of Inorganic Chemistry, University of Goteborg, Sweden. Google Scholar
  107. Munthe, J., Wangberg, I., Pirrone, N., Iverfeld, A., Ferrara, R., Ebinghaus, R., Feng, R., Gerdfelt, K., Keeler, G.J., Lanzillotta, E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo, E., Schmolke, S., Schroder, W.H., Sommar, J., Sprovieri, F., Stevens, R.K., Stratton, W., Tuncel, G., Urba, A. (2001) Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmospheric Environment, 35, 3007–3017.CrossRefGoogle Scholar
  108. Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J. andUpstill-Goddard, R.C., 2000. In situ evaluation of air-sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1), 373–387CrossRefGoogle Scholar
  109. Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333, 134–139.CrossRefGoogle Scholar
  110. Nriagu, J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49.CrossRefGoogle Scholar
  111. Nriagu, J.O. Mechanistic steps in the photoreduction of mercury in natural waters (1994) Sci Total Environ, 154: 1–8.CrossRefGoogle Scholar
  112. Pacyna, E.G., Pacyna, J.M., Pirrone, N. (2001). European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35, 2987–2996.CrossRefGoogle Scholar
  113. Petersen, G., Munthe, J., Pleijel, K., Bloxam, R., Vinod Kumar, A., 1998. A comprehensive eulerian modeling framework for airborne mercury species: development and testing of the tropospheric chemistry module (TCM). Atmospheric Environment 29, 829–843.CrossRefGoogle Scholar
  114. Pirrone, N., Keeler, G.J., Nriagu, J.O., 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment 30, 2981–2987.CrossRefGoogle Scholar
  115. Pirrone, N., Allegrini, I., Keeler, G.J., Nriagu, J.O., Rossmann, R., Robbins, J.A., 1998. Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records. Atmospheric Environment 32, 929–940.CrossRefGoogle Scholar
  116. Pirrone, N., Hedgecock, I., Forlano, L., 2000a. The role of the ambient aerosol in the atmospheric processing of semivolatile contaminants: a parameterised numerical model (GASPAR). Journal of Geophysical Research 105 (D8), 9773–9790.CrossRefGoogle Scholar
  117. Pirrone, N., Costa, P., Pacyna, J.M., Ferrara, R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean Region. Atmospheric Environment 35, 2997–3006.CrossRefGoogle Scholar
  118. Pirrone, N., Ferrara, R., Hedgecock, I.M., Kallos, G., Mamane, Y., Munthe, J., Pacyna, J.M., Pytharoulis, I., Sprovieri, F., Voudouri, A., Wangberg, I. (2003) Dynamic Processes of Mercury Over the Mediterranean Region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmospheric Environment .Vol.37-S1, 21–39.CrossRefGoogle Scholar
  119. Pirrone, N., Sprovieri, F., Hedgecock, I.M., Trunfio, A., Cinnirella, S. (2005) Dynamic Processes of Atmospheric Mercury in the Mediterranean Region. In: Dynamics of Mercury Pollution on Regional and Global Scales, N. Pirrone andK. Mahaffey (Editors),Springer Verlag Publishers, Norwell, MA, USA. Chapter 23, pp.541–579.CrossRefGoogle Scholar
  120. Pirrone, N. (2006) An integrated approach to assess the mercury cycling in the Mediterranean basin (MERCYMS). Final Technical Report + Annexes + CD-Rom.Rapporto Tecnico CNR/IIA/2006/08, Rende, Italy, pp. 377.Google Scholar
  121. Poissant, L., Casimir, A., 1998. Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment 32, 883–893.CrossRefGoogle Scholar
  122. Poissant, L., Amyot, M., Pilote, M., Lean, D., 2000. Mercury water– air exchange over the Upper St. Lawrence River and Lake Ontario. Environmental Science and Technology 34, 3069–3078.Google Scholar
  123. Prestbo, E., 1996. Mercury speciatin in the boundary layer and free troposphere advected to South Florida: phase I reconnaissance. Report submitted to Florida DEP, Tallahassee, FL.Google Scholar
  124. Rajar, R., Zagar, D., Horvat, M., Cetina, M., 2007. Mass balance of mercury in the Mediterranean Sea. Mar. Chem. 107, 89–102CrossRefGoogle Scholar
  125. Ramamoorthy, S., Cheng, T.C., Kushner, D.J., 1983. Mercury speciation in waters. Canadian Journal of Fisheries and Aquatic Sciences 40, 1795–1798.Google Scholar
  126. Rasmussen, P.E. 1994. Environ. Sci. Technol.; 28: 2233–2241.Google Scholar
  127. Rolfhus, K.R., Fitzgerald, W.F. (2001) The evasion and spatially temporal distribution of mercury species in Long Island Sound, CTNY. Geochim Cosmochim Acta, 65(3): 407–418.CrossRefGoogle Scholar
  128. Schroeder, W.H., Anlauf, K.G., Barrie, L.A., Lu, J.Y., Steffen, A., Schneeberger, D.R., Berg, T., 1998. Arctic springtime depletion of mercury. Nature 394, 331–332.CrossRefGoogle Scholar
  129. Schroeder, W.H., Munthe, J., 1998. Atmospheric mercury: An overview. Atmospheric Environment 29, 809–822.CrossRefGoogle Scholar
  130. Shia, R.L., Seigneur, C., Pai, P., Ko, M. andSze, N.D. 1999. Global simulation of atmospheric mercury concentrations and deposition fluxes. J. Geophys. Res., 104 (D19), 23760.CrossRefGoogle Scholar
  131. Slemr, F., Seiler, W., Schuster, G., 1981. Latitudinal distribution of mercury over the Atlantic Ocean. Journal of Geophysical Research 86, 1159–1166.CrossRefGoogle Scholar
  132. Slemr, F., Schuster, G., Seiler, W., 1985. Distribution, speciation, and budget of atmospheric mercury. Journal of Atmospheric Chemistry 3, 407–434.CrossRefGoogle Scholar
  133. Slemr, F., Langer, E., 1992. Increase in global atmospheric concentrations of Hg inferred from measurements over the Atlantic Ocean. Nature 355, 434–437.CrossRefGoogle Scholar
  134. Slemr, F., Junkermann, W., Schmidt, R.W.H., Sladkovic, R., 1995. Indication of change in global and regional trends of atmospheric mercury concentrations. Geophysical Research Letters 22, 2143–2146.CrossRefGoogle Scholar
  135. Slemr, F., Scheel, H.E., 1998. Trends in atmospheric mercury concentrations at the summit of the Wank mountain, Southern Germany. Atmospheric Environment 32, 845–853.CrossRefGoogle Scholar
  136. Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, Ch., Munthe, J., Wangberg, I., Schroeder, W., Steffen, A., Berg, T., 2003. Worldwide trends of atmospheric mercury since 1977. Geophyscial Research Letters, 30, NO.10, 1516, doi:10.1029/2003GL016954. CrossRefGoogle Scholar
  137. Sprovieri, F., Pirrone, N., Gärdfeldt, K. andSommar, J. (2003) Mercury speciation in the marine boundary layer along a 6000 km cruise path around the Mediterranean Sea, Atmos. Environ., 37, S6371.CrossRefGoogle Scholar
  138. Sprovieri, F. and Pirrone, N. (2008) Spatial and Temporal Distribution of Atmospheric Mercury Species over the Adriatic Sea. Environmental Fluid and Mechanics (in press).Google Scholar
  139. Sommar, J., Wängberg, I., Berg, T., Gårdfeldt, K., Munthe, J., Richter, A., Urba, A., Wittrock, F., Schroeder, W.H., 2007. Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Ålesund (79° N), Svalbard, spring 2002. Atmospheric Chemistry and Physics, 7(1), 151–166.CrossRefGoogle Scholar
  140. Stordal, M.C., Gill, G.A., Wen, L.S., Santschi, P.H., 1996. Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnology and Oceanography 41, 52–61.Google Scholar
  141. StLouis, V., Hintelmann, H., Graydon, J., Kirk, J.L., Barker, J., Dimock, B., Sharp, M.J., Lehnherr, I., 2007. Methylated Mercury Species in Canadian High Arctic Marine Surface Waters and Snowpacks. Environmental Science and Technology, 41, 6433–6441CrossRefGoogle Scholar
  142. Stumm, W., Morgan, J.J. (Eds.) (1996). Aquatic Chemistry - Chemical Equilibria and Rates in Natural Waters, 3rd Edition. WileyInterscience , New York, 1996 (Chapter 10).Google Scholar
  143. Sunderland, E.M. and Mason, R. P. 2007 Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles 21, GB4022, doi:10.1029/2006GB002876.Google Scholar
  144. Temme, C., F. Slemr, R. Ebinghaus, andJ. W. Einax (2003), Distribution of mercury over the Atlantic Ocean in 1996 and 1999–2001, Atmos. Environ., 37, 1889–1897.CrossRefGoogle Scholar
  145. Temme, C., Bakau, J., Schneider, B., Aspmo, K., Fain, X., Ferrari, C., Gauchrd, P.-E., Ebinghaus, R. 2005. Air/water exchange of mercury in the North Atlantic Ocean during arctic summer. Extended Abstract for the XIII International Conference on Heavy Metals in the Environment, Rio de Janeiro, June 2005Google Scholar
  146. Tessier, E., Monperrus, M., Amouroux, D., Pinaly, H., De Wit, R., Leynaert, A., Donard, O.F.X., 2004. Mercury species distribution in the water column of the Mediterranean Sea during summer 2003. RMZ—Materials and Geoenvironment. 7th International Conference on Mercury as a Global Pollutant, Ljubljana, J, vol. 51, pp. 1408–1411.Google Scholar
  147. US-EPA, 1997. Mercury Study Report to Congress. US Environmental Protection Agency, EPA-452/R-97-003.Google Scholar
  148. Xun, L., Campbell, N.E.R., Rudd, J.W.M., 1987. Measurements of specific rates of net MeHg production in the water column and surface sediments of acidified and circumneutral lakes. Canadian Journal of Fisheries and Aquatic Science 44, 750–757.CrossRefGoogle Scholar
  149. Vaupotič, J., Kotnik, J., Repinc, U., Kobal, I., Horvat, M., Pirrone, N. 2007. Selected radionuclides and DGM in coastal and deep sea waters in the Mediterranean. Marine Chemistry, 107.Google Scholar
  150. Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., Tuncel, G. (2001) Atmospheric Mercury Distributions in North Europe and in the Mediterranean Region. Atmospheric Environment, 35, 3019–3025.CrossRefGoogle Scholar
  151. Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R., Iverfeldt, Å., 2001a. Estimates of air–sea exchange of mercury in the Baltic Sea. Atmospheric Environment 35, 5477–5484.CrossRefGoogle Scholar
  152. Wangberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R. andIverfeldt, A., 2001b. Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment, 35, 5477–5484CrossRefGoogle Scholar
  153. Wängberg, Munte, J., Amouroux, D., Andersson, M. E., Fajon, V., Ferrara, R., Gårdfeldt, K., Horvat, M., Mamane, Y., Melamed, E., Monperrus, M., Ogrinc, N., Yossef, O., Pirrone, N., Sommar, J., Sprovieri, F. (2008) Atmospheric Mercury at Mediterranean Coastal Stations. Environmental Fluid Mechanics. (in press)Google Scholar
  154. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382CrossRefGoogle Scholar
  155. Wanninkhof, R. andMcGillis, W.R., 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 26(13), 1889–18892CrossRefGoogle Scholar
  156. Weiss, A., Kuss, J., Peters, G., Schneider, B. Evaluating transfer velocity–wind speed relationship using a long-term series of direct eddy correlation CO2 flux measurements. Journal of Marine Systems. 2007, 66 (Special Issue), 130–139.CrossRefGoogle Scholar
  157. Whalin, L.M. andR. P. Mason. 2006. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon® bags and additions of isotopically labeled mercury. Anal. Chim. Acta, 558: 211–221.CrossRefGoogle Scholar
  158. Whalin, Lindsay; Kim, Eun-Hee; Mason, Robert (2007) Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters Marine Chemistry Volume:107, Issue:3, December 1, 2007, pp.278–294 CrossRefGoogle Scholar
  159. Xiao, Z., Munthe, J., Schroeder, W., Lindqvist, O., 1991. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus 43B, 267–379.Google Scholar
  160. Xiao, Z.F., Munthe, J., Stromberg, D., Lindqvist, O., 1994. Photochemical Behaviour of Inorganic Mercury Compounds in Aqueous Solution. Lewis Publishers, Boca Raton (Chapt. VI.6). Google Scholar
  161. Xiao, Z.F., Strömberg, D., Lindqvist, O., 1995. Influence of humic substances on photolysis of divalent mercury in aqueous solution. Water, Air, and Soil Pollution 80, 789–798.CrossRefGoogle Scholar
  162. Zavatarelli, M., Mellor, G.L., 1995. A numerical study of the Mediterranean Sea circulation. Journal of Physical Oceanography 25, 1384–1414.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Francesca Sprovieri
    • 1
  • Nicola Pirrone
  • Robert P. Mason
  • Maria Andersson
  1. 1.CNR-Institute for Atmospheric PollutionDivision of RendeItaly

Personalised recommendations