Spatial coverage and temporal trends of atmospheric mercury measurements in Polar Regions

  • Aurélien Dommergue
  • Christophe P. Ferrari
  • Marc Amyot
  • Steve Brooks
  • Francesca Sprovieri
  • Alexandra Steffen


The discovery of atmospheric mercury depletion events (AMDEs) in the Canadian Arctic at Alert in 1995 initiated the intense study of atmospheric Hg processes. Mercury has unique characteristics that include long-range atmospheric transport to regions like the Arctic and the Antarctica, the transformation to more toxic methylmercury compounds and the ability of these compounds to biomagnify in the aquatic food chain. Following the discovery of AMDEs, studies have been conducted throughout Polar Regions where the same phenomenon was observed. Since then, many scientific projects have focused on studying the mechanisms related to AMDEs. Additionally, special attention is paid to the consequences of AMDEs in terms of contamination of Polar Regions because AMDEs rapidly convert atmospheric gaseous mercury into reactive and water-soluble forms that may potentially become bioavailable. Finally, the contribution of this unique reactivity occurring in polar atmospheres to the global budget of atmospheric mercury and the role played by snow and ice surfaces of these regions are important issues. This chapter presents a review of atmospheric measurements conducted both in the Arctic and the Antarctic since 1995 (continuous data). Our current understanding of AMDEs in these regions is presented.


Geophysical Research Letter Snow Pack Atmospheric Mercury Total Gaseous Mercury Elemental Gaseous Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.4 References

  1. AMAP, 2003. AMAP Assessment 2002: Human Health in the Arctic. Arctic Monitoring and Assesment Programme (AMAP). Oslo, Norway Google Scholar
  2. AMAP, 2005. AMAP Assessment 2002: Heavy Metals in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway Google Scholar
  3. Arimoto, R., Schloesslin, C., Davis, D., Hogan, A., Grube, P., Fitzgerald, W., Lamborg, C., 2004. Lead and mercury in aerosol particles collected over the South Pole during ISCAT-2000. Atmospheric Environment 38, 5485–5491.CrossRefGoogle Scholar
  4. Ariya, P.A., Khalizov, A., Gidas, A., 2002. Reactions of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications. Journal of Physical Chemistry A 106, 7310–7320.CrossRefGoogle Scholar
  5. Ariya, P.A., Dastoor, A.P., Amyot, M., Schroeder, W.H., Barrie, L., Anlauf, K., Raofie, F., Ryzhkov, A., Davignon, D., Lalonde, J., Steffen, A., 2004. The Arctic: a sink for mercury. Tellus Series B-Chemical and Physical Meteorology 56, 397–403.CrossRefGoogle Scholar
  6. Aspmo, K., Gauchard, P.-A., Steffen, A., Temme, C., Berg, T., Bahlmann, E., Banic, C., Dommergue, A., Ebinghaus, R., Ferrari, C., Pirrone, N., Sprovieri, F., Wibetoe, G., 2005. Measurements of atmospheric mercury species during an international study of mercury depletion events at Ny-Alesund, Svalbard, spring 2003. How reproducible are our present methods? Atmospheric Environment 39, 7607–7619.Google Scholar
  7. Aspmo, K., Temme, C., Berg, T., Ferrari, C., Gauchard, P.A., Fain, X., Wibetoe, G., 2006. Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer. Environmental Science and Technology 40, 4083–4089.CrossRefGoogle Scholar
  8. Avallone, L.M., Toohey, D.W., Fortin, T.J., McKinney, K.A., Fuentes, J.D., 2003. In situ measurements of bromine oxide at two high-latitude boundary layer sites: Implications of variability. Journal of Geophysical Research-Atmospheres 108. Google Scholar
  9. Banic, C., Beauchamp, S.T., Tordon, R.J., Schroeder, W.H., Steffen, A., Anlauf, K.A., 2003. Vertical distribution of gaseous elemental mercury in Canada. Journal of Geophysical Research 108, 4264.CrossRefGoogle Scholar
  10. Barkay, T., Poulain, A.J., 2007. Mercury (micro)biogeochemistry in polar environments. Fems Microbiology Ecology 59, 232–241.CrossRefGoogle Scholar
  11. Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, P.J., Rasmussen, R.A., 1988. Ozone destruction and photo-chemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141.CrossRefGoogle Scholar
  12. Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A.K., Wibetoe, G., 2003. Springtime depletion of mercury in the European Arctic as observed at Svalbard. Science of the total environment 304, 43–51.CrossRefGoogle Scholar
  13. Bottenheim, J.W., Gallant, A.G., Brice, K.A., 1986. Measurements of NOy species and O3 at 82oN latitude. Geophysical Research Letters 22, 599–602.Google Scholar
  14. Bottenheim, J., Chan, H.M., 2006. A trajectory study into the origin of spring time Arctic boundary layer ozone depletion. Journal of geophysical research 111, Google Scholar
  15. Braune, B.M., Outridge, P.M., Fisk, A.T., Muir, D.C.G., Helm, P.A., Hobbs, K., Hoekstra, P.F., Kuzyk, Z.A., Kwan, M., Letcher, R.J., Lockhart, W.L., Norstrom, R.J., Stern, G.A., Stirling, I., 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial and temporal trends. Science of the Total Environment 351, 4–56.CrossRefGoogle Scholar
  16. Brooks, S.B., Saiz-Lopez, A., Skov, H., Lindberg, S.E., Plane, J.M.C., Goodsite, M.E., 2006. The mass balance of mercury in the springtime arctic environment. Geophysical Research Letters 33, L13812.CrossRefGoogle Scholar
  17. Brooks, S., Arimoto, R., Lindberg, S., and Southworth, G., 2008a. Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial, Atmospheric Environment vol. 42, no. 12, 2877–2884.Google Scholar
  18. Brooks, S., Lindberg, S., Southworth, G., and Arimoto, R., 2008b. Springtime atmospheric mercury speciation in the McMurdo, Antarctica coastal region. Atmospheric Environment vol. 42, no. 12, 2885–2893.CrossRefGoogle Scholar
  19. Calvert, J.G., Lindberg, S.E., 2004. The potential influences of iodine containing compounds on the chemistry of the troposphere in the polar spring II. Atmospheric Environment 38, 5105–5116.CrossRefGoogle Scholar
  20. Cobbett, F.D., Steffen, A., Lawson, G., Van Heyst, B.J., 2007. GEM fluxes and atmospheric mercury concentrations (GEM, RGM and HgP) in the Canadian Arctic at Alert, Nunavut, Canada (February-June 2005). Atmospheric Environment 41, 6527–6543.CrossRefGoogle Scholar
  21. Dastoor, A.P., Larocque, Y., 2004. Global circulation of atmospheric mercury: a modelling study. Atmospheric Environment 38, 147–161.CrossRefGoogle Scholar
  22. De Mora, S.J., Bibby, D.M., Patterson, J.E., 1991. Baseline concentration and speciation of atmospheric mercury at Baring Head (41"S), New Zealand. Environmental Technology 12, 943–946.CrossRefGoogle Scholar
  23. De Mora, S.J., Patterson, J.E., Bibby, D.M., 1993. Baseline atmospheric mercury studies at Ross Island, Antarctica. Antarctic Science 5, 323– 326.CrossRefGoogle Scholar
  24. Dibb, J.E., Stutz, J., Huey, L.G., Brooks, S.B., Lefer, B.L., von Glasow, R., Tanner, D.J., 2008. Bromine and mercury air-snow exchange on the Greenland ice cap. in prep. . Google Scholar
  25. Dommergue, A., Ferrari, C.P., Poissant, L., Gauchard, P.-A., Boutron, C.F., 2003a. Chemical and photochemical processes at the origin of the diurnal cycle of gaseous mercury within the snow-pack at Kuujjuarapik, Québec. Environmental Science & Technology 37, 3289–3297.CrossRefGoogle Scholar
  26. Dommergue, A., Ferrari, C.P., Gauchard, P.-A., Boutron, C.F., Poissant, L., Pilote, M., Jitaru, P., Adams, F., 2003b. The fate of mercury species in a sub-arctic snow-pack during snowmelt. Geophysical Research Letters 30, doi: 10.1029/2003GL017308. Google Scholar
  27. Dommergue, A., Bahlmann, E., Ebinghaus, R., Ferrari, C., Boutron, C., 2007. Laboratory simulation of Hg° emissions from a snowpack. Analytical and Bioanalytical Chemistry 388, 319–327.CrossRefGoogle Scholar
  28. Douglas, T.A., Sturm, M., Simpson, W.R., Brooks, S., Lindberg, S.E., Perovich, D.K., 2005. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophysical Research Letters 32, -. Google Scholar
  29. Ebinghaus, R., Kock, H.H., Temme, C., Einax, J.W., Löwe, A.G., Richter, A., Burrows, J.P., Schroeder, W.H., 2002. Antarctic Springtime Depletion of Atmospheric Mercury. Environmental Science and Technology 36, 1238 –1244.CrossRefGoogle Scholar
  30. Fain, X., Ferrari, C.P., Gauchard, P.-A., Magand, O., Boutron, C.F., 2006. Fast depletion of elemental gaseous mercury in the kongsvegen Glaciersnowpack in Svalbard. Geophysical Research Letters 33, L06826, doi:06810.01029/02005GL025223. Google Scholar
  31. Faïn, X., Ferrari, C., Dommergue, A., Albert, M., Battle, M., Arnaud, L., Barnola, J.-M., Cairns, W.R.L., Barbante, C., Boutron, C., 2007. Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels. Atmospheric Chemistry and Physics Discussions 7, 18221–18268.Google Scholar
  32. Ferrari, C.P., Dommergue, A., Boutron, C.F., 2004a. Profiles of mercury in the snow pack at Station Nord, Greenland shortly after polar sunrise. Geophysical Research Letters 31, L03401, doi: 03410.01029/02003GL018961. Google Scholar
  33. Ferrari, C.P., Dommergue, A., Boutron, C.F., Skov, H., Goodsite, M., Jensen, B., 2004b. Nighttime production of elemental gaseous mercury in interstitial air of snow at Station Nord, Greenland. Atmospheric Environment 38, 2727–2735.CrossRefGoogle Scholar
  34. Ferrari, C.P., Gauchard, P.A., Aspmo, K., Dommergue, A., Magand, O., Bahlmann, E., Nagorski, S., Temme, C., Ebinghaus, R., Steffen, A., Banic, C., Berg, T., Planchon, F., Barbante, C., Cescon, P., Boutron, C.F., 2005. Snow–to–air exchanges of mercury in an Arctic seasonal snow pack in Ny–Alesund, Svalbard. Atmospheric Environment 39, 7633–7645.CrossRefGoogle Scholar
  35. Foster, K.L., Plastridge, R.A., Bottenheim, J.W., Shepson, P.B., Finlayson-Pitts, B.J., Spicer, C.W., 2001. The role of Br-2 and BrCl in surface ozone destruction at polar sunrise. Science 291, 471–474.CrossRefGoogle Scholar
  36. Friess, U., 2001. Spectroscopic Measurements of Atmospheric Trace Gases at Neumayer-Station, Antarctica. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany. Google Scholar
  37. Gardfeldt, K., Jonsson, M., 2003. Is bimolecular reduction of Hg(II) complexes possible in aqueous systems of environmental importance. Journal of Physical Chemistry A 107, 4478–4482.CrossRefGoogle Scholar
  38. Gauchard, P.A., Ferrari, C.P., Dommergue, A., Poissant, L., Pilote, M., Guehenneux, G., Boutron, C.F., Baussand, P., 2005a. Atmospheric particle evolution during a nighttime atmospheric mercury depletion event in sub-Arctic at Kuujjuarapik/Whapmagoostui, Quebec, Canada. Science of the Total Environment 336, 215–224.CrossRefGoogle Scholar
  39. Gauchard, P.A., Aspmo, K., Temme, C., Steffen, A., Ferrari, C.P., Berg, T., Ström, J., Kaleschke, L., Dommergue, A., Bahlmann, E., Magand, O., Planchon, F., Ebinghaus, R., Banic, C., Nagorski, S., Baussand, P., Boutron, C.F., 2005b. Study of the origin of atmospheric mercury depletion events recorded in Ny-Ålesund, Svalbard, spring 2003. Atmospheric Environment 39, 7620–7632.CrossRefGoogle Scholar
  40. Goodsite, M.E., Plane, J.M.C., Skov, H., 2004. A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere. Environmental Science & Technology 38, 1772–1776.CrossRefGoogle Scholar
  41. Holmes, C.D., Jacob, D.J., Yang, X., 2006. Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere. Geophysical Research Letters 33, -. Google Scholar
  42. Iversen, T., Joranger, E., 1985. Arctic air pollution and large scale atmospheric flows. Atmospheric Environment 19, 2099–2108.CrossRefGoogle Scholar
  43. Johansen, P., Mulvad, G., Pedersen, H.S., Hansen, J.C., Riget, F., 2007. Human accumulation of mercury in Greenland. Science of the Total Environment 377, 173–178.CrossRefGoogle Scholar
  44. King, M.D., Simpson, W.R., 2001. Extinction of UV radiation in Arctic snow at Alert, Canada (82 degrees N). Journal of Geophysical Research 106, 12499–12507.CrossRefGoogle Scholar
  45. Kirk, J.L., St. Louis, V.L., Sharp, M.J., 2006. Rapid reduction and reemission of mercury deposited into snow packs during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environmental Science & Technology 40, 7590–7596.CrossRefGoogle Scholar
  46. Lahoutifard, N., Sparling, M., Lean, D., 2005. Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada. Atmospheric Environment 39, 7597–7606.CrossRefGoogle Scholar
  47. Lahoutifard, N., Poissant, L., Scott, S.L., 2006. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Quebec. Science of the Total Environment 355, 118–126.CrossRefGoogle Scholar
  48. Lehrer, E., 1999. Polar Tropospheric Ozone Loss. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany. Google Scholar
  49. Lindberg, S.E., Brooks, S.B., Lin, C.J., Scott, K., Meyers, T., Chambers, L., Landis, M., Stevens, R.K., 2001. Formation of reactive gaseous mercury in the Arctic: evidence of oxidation of Hg0 to gas-phase Hg(II) compounds after arctic sunrise. Water Air and Soil Pollution 1, 295–302. CrossRefGoogle Scholar
  50. Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K.J., Landis, M.S., Stevens, R.K., Goodsite, M., Richter, A., 2002. Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise. Environmental Science and Technology 36, 1245–1256.CrossRefGoogle Scholar
  51. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X.B., Fitzgerald, W., Pirrone, N., Prestbo, E., Seigneur, C., 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36, 19–32.CrossRefGoogle Scholar
  52. Lockhart, W.L., Wilkinson, P., Billeck, B.N., Danell, R.A., Hunt, R.V., Brunskill, G.J., Delaronde, J., St. Louis, V., 1998. Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores. Biogeochemistry 40, 163–173.CrossRefGoogle Scholar
  53. Lockhart, W.L., Stern, G.A., Wagemann, R., Hunt, R.V., Metner, D.A., DeLaronde, J., Dunn, B., Stewart, R.E.A., Hyatt, C.K., Harwood, L., Mount, K., 2005. Concentrations of mercury in tissues of beluga whales (Delphinapterus leucas) from several communities in the Canadian Arctic from 1981 to 2002. Science of the Total Environment 351, 391–412.CrossRefGoogle Scholar
  54. Lu, J.Y., Schroeder, W.H., Barrie, L.A., Steffen, A., Welch, H.E., Martin, K., Lockhart, L., Hunt, R.V., Boila, G., Richter, A., 2001. Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophysical Research Letters 28, 3219–3222.CrossRefGoogle Scholar
  55. Lu, J.Y., Schroeder, W.H., 2004. Annual time-series of total filterable atmospheric mercury concentrations in the Arctic. Tellus 56B, 213–222.Google Scholar
  56. Macdonald, R.W., Bewers, J.M., 1996. Contaminants in the arctic marine environment: priorities for protection. ICES Journal of Marine Science 53, 537–563.CrossRefGoogle Scholar
  57. Miranda, K.C., Metcalfe, T.L., Metcalfe, C.D., Robaldo, R.B., Muelbert, M.M.C., Colares, E.P., Martinez, P.E., Bianchini, A., 2007. Residues of persistent organochlorine contaminants in Southern elephant seals (Mirounga leonina) from Elephant Island, Antarctica. Environmental Science & Technology 41, 3829–3835.CrossRefGoogle Scholar
  58. Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40, 4048–4063.CrossRefGoogle Scholar
  59. Piot, M., von Glasow, R., 2008. The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events. Atmospheric Chemistry and Physics 8, 2437–2467.Google Scholar
  60. Poissant, L., Pilote, M., 2003. Time series analysis of atmospheric mercury in Kuujjuarapik/Whapmagoostui (Quebec). Journal de Physique IV 107, 1079–1082.CrossRefGoogle Scholar
  61. Poulain, A.J., Lalonde, J.D., Amyot, M., Shead, J.A., Raofie, F., Ariya, P.A., 2004. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment 38, 6763–6774.CrossRefGoogle Scholar
  62. Poulain, A.J., Garcia, E., Amyot, M., Campbell, P.G.C., Raofie, F., Ariya, P.A., 2007a. Biological and chemical redox transformations of mercury in fresh and salt waters of the high arctic during spring and summer. Environmental Science & Technology 41, 1883–1888.CrossRefGoogle Scholar
  63. Poulain, A.J., Ni Chadhain, S.M., Ariya, P.A., Amyot, M., Garcia, E., Campbell, P.G.C., Zylstra, G.J., Barkay, T., 2007b. Potential for mercury reduction by microbes in the high arctic. Applied and Environmental Microbiology 73, 2230–2238.CrossRefGoogle Scholar
  64. Raatz, W.E., Shaw, G.E., 1984. Long-range tropospheric transport of pollution aerosols into the Alaskan arctic. Journal of Climatology and Applied Meteorololgy 7, 1052–1064.CrossRefGoogle Scholar
  65. Richter, A., Wittrock, F., Ladstatter-Weissenmayer, A., Burrows, J.P., 2002. GOME measurements of stratospheric and tropospheric BrO. Remote Sensing of Trace Constituents in the Lower Stratosphere, Troposphere and the Earth's Surface: Global Observations, Air Pollution and the Atmospheric Correction 29, 1667–1672.Google Scholar
  66. Riva, S.D., Abelmoschi, M.L., Magi, E., Soggia, F., 2004. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea-Northern Victoria Land). Chemosphere 56, 59–69.CrossRefGoogle Scholar
  67. Saiz-Lopez, A., Plane, J.M.C., Mahajan, A.S., Anderson, P.S., Bauguitte, S.J.B., Jones, A.E., Roscoe, H.K., Salmon, R.A., Bloss, W.J., Lee, J.D., Heard, D.E., 2007. On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime. Atmospheric Chemistry and Physics Discussions 7, 9385–9417.Google Scholar
  68. Schroeder, W.H., Munthe, J., 1995. Atmospheric mercury - an overview. Atmospheric Environment 32, 809–822.CrossRefGoogle Scholar
  69. Schroeder, W.H., Anlauf, K.G., Barrie, L.A., Lu, J.Y., Steffen, A., Schneeberger, D.R., Berg, T., 1998. Arctic springtime depletion of mercury. Nature 394, 331–332.CrossRefGoogle Scholar
  70. Scott, K.J., 2001. Bioavailable mercury in arctic snow determined by a light-emitting mer-lux bioreporter. Arctic 54, 92–95.Google Scholar
  71. Serreze, M.C., Maslanik, J.A., Scambos, T.A., Fetterer, F., Stroeve, J., Knowles, K., Fowler, C., Drobot, S., Barry, R.G., Haran, T.M., 2002. A record minimum arctic sea ice extent and area in 2002. Geophysical Research Letters 30, 1110.CrossRefGoogle Scholar
  72. Simpson, W., Von Glasow, R., Riedel, K., Anderson, P., Ariya, P.A., Bottenheim, J., Burrows, J.P., Carpenter, L., Freisse, U., Goodsite, M., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P.B., Sodeau, J., Steffen, A., Wagner, T., Wolff, E., 2007. Halogens and their role in polar boundary-layer ozone depletion. Atmospheric Chemistry and Physics 7, 4375–4418.CrossRefGoogle Scholar
  73. Skov, H., Christensen, J.H., Heidam, N.Z., Jensen, B., Wahlin, P., Geernaert, G., 2004. Fate of elemental mercury in the Arctic during atmospheric depletion episodes and the load of atmospheric mercury to the Arctic. Environmental Science & Technology 38, 2373–2382.CrossRefGoogle Scholar
  74. Skov, H., Goodsite, M.E., Lindberg, S.E., Meyers, T.P., Landis, M., Larsen, M.R.B., McConville, G., 2006. The fluxes of Reactive Gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmospheric Environment 40, 5452–5463.CrossRefGoogle Scholar
  75. Slemr, F., Brunke, E., Ebinghaus, R., Temme, C., Munthe, J., Wängberg, I., Schroeder, W.H., Steffen, A., Berg, T., 2003. Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters 30, 23–21.CrossRefGoogle Scholar
  76. Sommar, J., Wangberg, L., Berg, T., Gardfeldt, K., Munthe, J., Richter, A., Urba, A., Wittrock, F., Schroeder, W.H., 2007. Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-A°lesund (79° N), Svalbard, spring 2002. Atmospheric Chemistry and Physics 7, 151–166.Google Scholar
  77. Sonne, C., Dietz, R., Leifsson, P.S., Asmund, G., Born, E.W., Kirkegaard, M., 2007. Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels? Environmental Health 6, -. Google Scholar
  78. Sprovieri, F., Pirrone, N., 2000. A preliminary assessment of mercury levels in the Antarctic and Arctic troposphere. Journal of Aerosol Science 31, 757–758.CrossRefGoogle Scholar
  79. Sprovieri, F., Pirrone, N., Landis, M., Stevens, R.K., 2005a. Oxidation of gaseous elemental mercury to gaseous divalent mercury during 2003 polar sunrise at Ny-Alesund. Environmental Science & Technology 39, 9156–9165.CrossRefGoogle Scholar
  80. Sprovieri, F., Pirrone, N., Landis, M., Stevens, R.K., 2005b. Atmospheric mercury behaviour at different altitudes at Ny Alesund during Spring 2003. Atmospheric Environment, 39, 7646–7656.CrossRefGoogle Scholar
  81. Sprovieri, F., Pirrone, N., Hedgecock, I.M., Landis, M.S., Stevens, R.K., 2002. Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. Journal of Geophysical Research-Atmospheres 107 Google Scholar
  82. St. Louis, V.L., Sharp, M.J., Steffen, A., May, A., Barker, J., Kirk, J.L., Kelly, D.J.A., Arnott, S.E., Keatley, B., Smol, J.P., 2005. Some Sources and Sinks of Monomethyl and Inorganic Mercury on Ellesmere Island in the Canadian High Arctic. Environmental Science & Technology 39, 2686–2701.CrossRefGoogle Scholar
  83. Steffen, A., Schroeder, W.H., Bottenheim, J., Narayan, J., Fuentes, J.D., 2002. Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. Atmospheric Environment 36, 2653–2661. CrossRefGoogle Scholar
  84. Steffen, A., Schroeder, W.H., Edwards, G., Banic, C., 2003a. Mercury throughout polar sunrise 2002. Journal de Physique IV 107, 1267–1270.CrossRefGoogle Scholar
  85. Steffen, A., Schroeder, W.H., Poissant, L., MacDonald, R., 2003b. Mercury in the arctic atmosphere. Indian and Northern Affairs Canada, Ottawa Google Scholar
  86. Steffen, A., Schroeder, W.H., Macdonald, R., Poissant, L., Konoplev, A., 2005. Mercury in the arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). Science of the total environment 342, 185–198.CrossRefGoogle Scholar
  87. Steffen, A., 2007. Mercury Measurements at Alert. QS-8602-060-EE-A1, Ministry of Indian Affairs and Northern Development, Ottawa Google Scholar
  88. Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S., Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.E., Lean, D., Poulain, A., Scherz, C., Skov, H., Sommar, J., Temme, C., 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics 8, 1445–1482.CrossRefGoogle Scholar
  89. Stroeve, J.C., Serreze, M.C., Fetterer, F., Arbetter, T., Meier, W., Maslanik, J., Knowles, K., 2005. Tracking the Arctic's shrinking ice cover: Another extreme September minimum in 2004. Geophysical Research Letters 32, Google Scholar
  90. Tackett, P.J., Cavender, A., Shepson, P.B., Bottenheim, J.W., Morin, S., Deary, J., Steffen, A., 2007. A Study of the vertical scale of halogen chemistry in the Arctic troposphere during polar sunrise at Barrow, AK. Journal of geophysical research 112, D07306.CrossRefGoogle Scholar
  91. Temme, C., Einax, J.W., Ebinghaus, R., Schroeder, W.H., 2003. Measurements of Atmospheric Mercury Species at a Coastal Site in the Antarctic and over the South Atlantic Ocean during Polar Summer. Environmental Science & Technology 37, 22–31.CrossRefGoogle Scholar
  92. Temme, C., Blanchard, P., Steffen, A., Beauchamp, S.T., Poissant, L., Tordon, R.J., Weins, B., 2007. Trend, seasonal and multivariate analysis study of total gaseous mercury data from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmospheric Environment 41, 5423–5441.CrossRefGoogle Scholar
  93. Travnikov, O., Ryaboshapko, A., 2002. EMEP/MSC-E report 6/02. Google Scholar
  94. van Aardenne, J.A., Carmichael, G.R., Levy, H., Streets, D., Hordijk, L., 1999. Anthropogenic NOx emissions in Asia in the period 1990-2020. Atmospheric Environment 33, 633–646.CrossRefGoogle Scholar
  95. Wagemann, R., Innes, S., Richard, P.R., 1996. Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic. Science of the Total Environment 186, 41–66.CrossRefGoogle Scholar
  96. Walker, J.B., Houseman, J., Seddon, L., McMullen, E., Tofflemire, K., Mills, C., Corriveau, A., Weber, J.P., LeBlanc, A., Walker, M., Donaldson, S.G., Van Oostdam, J., 2006. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environmental Research 100, 295–318.CrossRefGoogle Scholar
  97. Wangberg, I., Sommar, J., Berg, T., Gardfeldt, K., Munthe, J., 2003. Interpretation of mercury depletion events observed at Ny-Alesund, Svalbard during spring 2002. Journal de Physique IV 107, 1353–1356.CrossRefGoogle Scholar
  98. Zhou, X.L., Beine, H.J., Honrath, R.E., Fuentes, J.D., Simpson, W., Shepson, P.B., Bottenheim, J.W., 2001. Snowpack photochemical production of HONO: a major source of OH in the Arctic boundary layer in springtime. Geophysical Research Letters 28, 4087–4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Aurélien Dommergue
    • 1
  • Christophe P. Ferrari
    • 2
  • Marc Amyot
    • 3
  • Steve Brooks
    • 4
  • Francesca Sprovieri
    • 5
  • Alexandra Steffen
    • 6
  1. 1.Saint Martin d’HèresLaboratoire de Glaciologie et Géophysique de l’EnvironnementFrance
  2. 2.Saint Martin d’HèresLaboratoire de Glaciologie et Géophysique de l’EnvironnementFrance
  3. 3.MontréalDép. de Sciences Biologiques, Université de MontréalCanada
  4. 4.National Oceanic and Atmospheric AdministrationOak RidgeUSA
  5. 5.Division of RendeCNR-Institute for Atmospheric PollutionRendeItaly
  6. 6.Air Quality Research DivisionEnvironment CanadaTorontoCanada

Personalised recommendations