Advertisement

Global Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources

  • Nicola Pirrone
  • Sergio Cinnirella
  • Xinbin Feng
  • Robert B. Finkelman
  • Hans R. Friedli
  • Joy Leaner
  • Rob Mason
  • Arun B. Mukherjee
  • Glenn Stracher
  • David G. Streets
  • Kevin Telmer
Chapter

Summary

This chapter provides an up-to-date overview of global mercury emissions from natural and anthropogenic sources at country and regional/continental scale. The information reported in Chapters 2–8 is the basis of the assessment reported in this chapter, however, emissions data related to sources and regions not reported in chapters 2–8 have been derived, to the extent possible, from the most recent peer-reviewed literature and from official technical reports. Natural sources, which include the contribution from oceans and other surface waters, rocks, top soils and vegetation, volcanoes and other geothermal activities and biomass burning are estimated to release annually about 5207 Mg of mercury, part of which represent previously deposited anthropogenic and natural mercury from the atmosphere to ecosystem-receptors due to historic releases and part is a new contribution from natural reservoirs. Current anthropogenic sources, which include a large number of industrial point sources are estimated to release about 2917 Mg of mercury on an annual basis, the major contribution is from fossil fuel-fired power plants (1422 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), waste disposal (187 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1) and cement production (236 Mg yr-1). Our current estimate of global emissions suggest that summing up the contribution from natural and anthropogenic sources nearly 8124 Mg of mercury is released annually to the global atmosphere. The evaluation of global emissions presented in this report differs from previous published assessments because in the past, emissions from several sources, i.e., forest fires and coal-bed fires have not been accounted for, and also because of improved knowledge of some anthropogenic and natural sources (i.e., emissions from oceans, vegetation) as suggested by the most up-to-date literature.

Keywords

Mercury Concentration Atmospheric Environment Mercury Content Former Soviet Union Mercury Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.6 References

  1. ACAP, 2005. Arctic Mercury Releases Inventory. Reduction of Atmospheric Mercury Releases from Arctic States. Arctic Council Action Plan to Eliminate Pollution of the Arctic (ACAP), Danish Ministry of the Environment, Danish Environmental Protection Agency, Copenhagen, Denmark,: 116 pp.Google Scholar
  2. ACAP, 2005. Assessment of Mercury Releases from the Russian Federation. Arctic Council Action Plan to Eliminate Pollution of the Arctic (ACAP). Danish Ministry of the Environment, Danish Environmental Protection Agency, Copenhagen, Denmark: 332 pp.Google Scholar
  3. Andersson M.E., Gårdfeldt K., Wängberg I., Sprovieri F., Pirrone N., Lindqvist O., 2007. Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Marine Chemistry, Vol.104, 214-226. Reprint on the Special Issue, Vol. 107, pp.104–116.CrossRefGoogle Scholar
  4. Belkin H.E., Finkelman R.B., Wang Q., Wang B., Zheng B., 2004. Mercury in China coals: abstracts of the 21st Annual Meeting of the Society for Organic Petrology, v. 21, p. 28.Google Scholar
  5. Bishop K.H., Lee Y.H., Munthe J., Dambrine E., 1998. Xylem sap as a pathway for total mercury and methyl mercury transport from soil to tree canopy in a boreal forest. Biogeochemistry, 40, 101-113.CrossRefGoogle Scholar
  6. Bjønstad S.L., Linde M.R., 1994. Materialstrømanalyse av kvikksølv. Vurdering av alternativer, Utkast til SFT-rapport, Oslo, Norway. Google Scholar
  7. Bloom N.S., 2000. Analysis and Stability of Mercury Speciation in Petroleum Hydrocarbons. Fresenius' J. Anal. Chem., 366, 438–443.CrossRefGoogle Scholar
  8. Brunke E.G., Labuschagne C., Slemr F., 2001. Gaseous Hg emissions from a fire in the Cape Peninsula, South Africa, during January 2000. Geophysical Research Letters, 28 (8): 1483-1486.CrossRefGoogle Scholar
  9. Carballeira A., Fernandez J.A., 2002. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant. Chemosphere, 47: 1041-1048.CrossRefGoogle Scholar
  10. Carvalho J.A., Higuchi N., Araujo T., Santos J.C., 1998. Combustion completeness in a rain forest clearing experiment in Manaus, Brazil. Journal of Geophysical Research, 103 (D11): 13195-13200.CrossRefGoogle Scholar
  11. Cavallini A., Natali L., Durante M., Maserti B.E., 1999. Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants, Sci. Tot. Env., 243/244, 119.CrossRefGoogle Scholar
  12. CEC, 2001. Preliminary Atmospheric Emissions Inventory of Mercury in Mexico. Final Report. Acosta y Asociados Project CEC-01 prepared for Commission for Environmental Cooperation No. 3.2.1.04. Google Scholar
  13. Cinnirella S., Pirrone N., 2006. Spatial and temporal distribution of mercury emission from forest fires in Mediterranean region and Russian federation. Atmospheric Environment 40:7346-7361.CrossRefGoogle Scholar
  14. Cinnirella S., Pirrone N., Allegrini A., Guglietta D., 2008. Modeling mercury emissions from forest fires in the Mediterranean region Environmental Fluid Mechanics, 8: 129–145.Google Scholar
  15. Coates D.A., Heffern E.L., 2000. Origin and geomorphology of clinker in the Powder River Basin, Wyoming and Montana. In: Coal bed methane and Tertiary geology of the Powder River Basin (Miller R., Ed.), Wyoming Geological Association 50th annual Field Conference Guidebook, Casper, WY, 211-229.Google Scholar
  16. Conaway C.H., Mason R.P., Steding D.J., Flegal A.R., 2005. Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay are, California. Atmospheric Environment, 39: 101-105.CrossRefGoogle Scholar
  17. Concorde East-West, 2006. Status Report: Mercury-cell Chlor-alkali Plants in Europe. Prepared for the European Environmental Bureau. October.Google Scholar
  18. Cossa D., Coquery M., Gobeil C., Martin J.M., 1996. Mercury fluxes at the ocean margins. In Global and regional mercury cycles: sources, fluxes and mass balances, pp. 229–247. Ed. by W. Baeyens et al. Kluwer Academic Publishers.Google Scholar
  19. Culver A., 2007. How to Specify Low-mercury and Lead-free Lighting Equipment. Available at: www.abag.ca.gov/abagenergywatch/pdfs/EnviroSpec-Mercury.pdf
  20. Discover, 1999. China's on fire. R&D News, 20 (10): 20 pp.Google Scholar
  21. DME, 2003. Integrated Energy Plan for the Republic of South Africa. Department of Minerals and Energy, South Africa, Pretoria, South Africa.Google Scholar
  22. EC, 2001a. Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing industry. Available at: eippcb.jrc.esGoogle Scholar
  23. EC, 2001b. Pollutants in urban waste water and sewage sludge. European Commission, Luxemburg: 244 pp. Available at www.ec.europa.eu/environment/ waste /sludge /sludge_ pollutants.htm.
  24. EC, 2002. Final report from the commission of the council concerning mercury from the Chlor-Alkali Industry. European Commission, Brussels.Google Scholar
  25. EC, 2004. Mercury flows in Europe and the World: the impact of decommissioned chlor-alkali plants. Available at: ec.europa.eu/environment/chemicals/mercury/pdf/report.pdfGoogle Scholar
  26. EIA, 2008. International Energy Outlook 2007. Available at: www.eia.doe.gov/oia f/ ieo /pdf/coal.pdf
  27. Eisenreich S.J., Bernasconi C., Campostrini P., De Roo A., George G., Heiskanen A.S., Hjorth J., Hoepffner N., Jones K.C., Noges P., Pirrone N., Runnalls N., Somma F., Stilanakis N., Umlauf G., van de Bund W., Viaroli P., Vogt J., Zaldivar J.M., 2005. Climate Change and the European Water Dimension. A Report to the European Water Directors 2005. EU Report No. 21553, European Commission-Joint Research Centre, Ispra, Italy, pp.253.Google Scholar
  28. Engle M.A., Gustin M.S., Zhang H., 2001. Quantifying naturalsource mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environment, 35: 3987-3997.CrossRefGoogle Scholar
  29. Environment Canada, 2008. Mercury and the environment. Available at: www.ec.gc.ca /MERCURY/EN/ndex.cfm
  30. EPA, 1992. Characterization of Products Containing Mercury in Municipal Solid Waste in the United States, 1970 to 2000. Environmental Protection Agency, Municipal Solid Waste Program, Office of Solid Waste, OSW-EPA-530-R-92-013. Google Scholar
  31. EPA, 2008. Mercury in Medical Waste. Mercury Fact Sheet # 1. Environmental Protection Agency, Region 5 Air and Radiation Division. Available at: www.epa.gov/ARD-R5/glakes/fact1.htm
  32. Ericksen J.A., Gustin M.S., Schorran D.E., Johnson D.W., Lindberg S.E., Coleman J.S., 2003. Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37 (12): 1613-1622.CrossRefGoogle Scholar
  33. Ericksen J.A., Gustin M.S., 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the Total Environment, 324: 271-279.CrossRefGoogle Scholar
  34. Eurochlor, 2008. Chlorine plants, January 2005. Chlorine online information resource. Available at: http://www.eurochlor.org/plants
  35. Feng X., Streets D.G., Hao J., Wu Y., Li G., 2008. Mercury emissions from industrial sources in China. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  36. Ferrara R., Maserti B.E., De Liso A., Cioni R., Raco B., Taddeucci G., Edner H., Ragnarson P., Sverberg S., Wallinder E., 1994. Atmospheric mercury emission at Solfatara Volcano, Pozzuoli, Phlegraean Fields-Italy. Chemosphere, 29: 1421–1428. CrossRefGoogle Scholar
  37. Ferrara R., Maserti B.E., Andersson M., Edner H., Ragnarson P., Svanberg S., 1997. Mercury degassing rate from mineralized areas in the Mediterranean basin. Water, Air and Soil Pollution, 93: 59-66.Google Scholar
  38. Ferrara R., Mazzolai B., Edner H., Svanberg S., Wallinder E., 1998. Atmospheric mercury sources in the Mt. Amiata area, Italy. The Science of the Total Environment, 213 (1–3): 13-23.CrossRefGoogle Scholar
  39. Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E., Pirrone N., 2000a. Volcanoes as Emission Sources of Atmospheric Mercury in the Mediterranean Basin. The Science of Total Environment, 259, 115-121.CrossRefGoogle Scholar
  40. Ferrara R., Mazzolai B., Lanzillotta E., Nucaro E., Pirrone N., 2000b. Temporal trends in gaseous mercury evasion from the Mediterranean Seawaters. The Science of Total Environment, 259, 183-190.CrossRefGoogle Scholar
  41. Finkelman R.B., 1993. Trace and minor elements in coal. In: Organic Geochemistry (M.H. Engel and S.A. Macko, Eds.), Plenum Press, New York. p. 593-607.Google Scholar
  42. Finnish Environment Institute, 1999. Atmospheric emissions of heavy metals in Finland in the 1990's. The Finnish Environment No. 329, Finnish Environment Institute, Helsinki (in Finnish).Google Scholar
  43. Friedli H.R., Radke L.F., Lu J.Y., 2001. Mercury in Smoke from Biomass Fires. Geophysical Research Letters, 28 (17): 3223- 3226.CrossRefGoogle Scholar
  44. Friedli H.R., Radke L.F., Lu J.Y., Banic C.M., Leaitch W.R., MacPherson J.I., 2003. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmospheric Environment, 37 (2): 253-267.CrossRefGoogle Scholar
  45. Friedli H.R., Arellano A.F. Jr., Cinnirella S., Pirrone N., 2008. Mercury emissions from global biomass burning: spatial and temporal distribution. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  46. Genest W., 1997. Recycling of fluorescent tubes in Germany. Federal Environmental Agency, Berlin, Germany, p. 1–6.Google Scholar
  47. Genie Urbain-Genie Rural, 1999. Les déchets mercuriels en France. Mercury waste in France, Parts 1 and 2, Nos. 7-8:20-48 and 17-53, France.Google Scholar
  48. GMP, 2006. Manual for Training Artisanal and Small-Scale Gold Miners, UNIDO, Vienna, Austria.Google Scholar
  49. Gustin M.S., Harald B., Christopher S., 2002. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36 (20): 3241-3254.CrossRefGoogle Scholar
  50. Hedgecock I.M., Pirrone N., 2004. Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg0 (g) in the Marine Boundary Layer at Various Latitudes. Environmental Science and Technology, Vol.38, 69-76.CrossRefGoogle Scholar
  51. Hedgecock I.M. and Pirrone N., 2005. Modelling chemical and physical processes of Hg compounds in the marine boundary layer. In: Dynamics of Mercury Pollution on Regional and Global Scales, N. Pirrone and K. Mahaffey (Editors), Springer Verlag Publishers, Norwell, MA, USA. Chapter 13, pp. 295-317. CrossRefGoogle Scholar
  52. Hedgecock I.M., Pirrone N.,Trunfio G.A., Sprovieri F., 2006. Integrated mercury cycling, transport and air-water exchange (MECAWEx) model. Journal of Geophysical Research, 111 (D20302). Google Scholar
  53. Herring J.R., 1989. Fires as cause, effect and feedback on the crustal cycles of carbon, phosphorus and nitrogen: Abstract of papers, 198th American Chemical Society National Meeting, American Chemical Society, Washington DC, GEOC 7.Google Scholar
  54. Herring J.R., Ciener J.S., Been J.M., Szari S.L., Reime M.G., Rice D.D., Boyce B.C., 1994. Methane, carbon dioxide, oxygen and nitrogen in soil gas overlying coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin, La Plata County, southwestern Colorado: Open-file report, U.S. Geological Survey, Reston, Virginia, 12 pp.Google Scholar
  55. Hoyer M., Baldauf1 R.V., Scarbro C., Barres J., Keeler G.J., 2004. Mercury Emissions from Motor Vehicles. 13th International Emission Inventory Conference. "Working for Clean Air in Clearwater". Clearwater, FL, June 8 – 10. Available at: www.epa.gov/ttn/chief/conference /ei13/
  56. Huber K., 1997a. Mercury Use: Wastewater Treatment Plants, Great Lakes Binational Toxics Strategy - The Wisconsin Mercury Source Book. (Available at: www. epa.gov/glnpo/ nsdocs/ hgsbook/)
  57. Huber K., 1997b. Wisconsin Mercury Sourcebook, U.S. EPA. Available at: www. p2pays.org/ ef/04/03851.htm
  58. Huse A, Lindmark GM, Sørensen PL, Weholt Ø, Mroueh U-M, Wahlström M., 1999. Investigation of categories and quantities of mercury waste and treatment capacity in the Nordic countries. Tema Nord No. 546. Nordic Council of Ministers, Copenhagen, 90 p.Google Scholar
  59. Hylander L.D., Meili M., 2003. 500 years of m Nacht ercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ, 304 (1–3): 137-144.CrossRefGoogle Scholar
  60. IAWG, 1997. Municipal Solid Waste Incinerator Residues. International Ash Working Group. Brussels.Google Scholar
  61. IEA, 2006. Energy Balances of OECD Countries (2006 edition)--Extended Balances and Energy Balances of Non-OECD Countries (2006 edition)--Extended Balances. International Energy Agency (IEA) Statistics Division, Paris. Available at data.iea.org/ieastore/default.asp.Google Scholar
  62. Iglesias T., Cala V., Gonzalez J., 1997. Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area. The Science of the Total Environment, 204(1): 89-96.CrossRefGoogle Scholar
  63. ITC, 2008. Overview about the coal fire problem. International Institute for Geoinformation Science and Earth Observation. Available at: www.itc.nl/∼coalfire/problem/hazards.html
  64. Jasinski S.M., 1994. The materials flow of mercury in the United States. The United States Department of the Interior, Bureau of Mines, Circular 9412. (Available at minerals.usgs.gov/minerals/pubs/commodity/mercury/).Google Scholar
  65. Jones G., Miller G., 2005. Mercury and Modern Gold Mining in Nevada. Dept. of Natural Resources and Environmental Sciences. University of Nevada. Available at: www.unep.org
  66. Kim K.-H., Kim M.-Y., 2002. Mercury emissions as landfill gas from a large-scale abandoned landfill site in Seoul. Atmospheric Environment Volume: 36, Issue: 31, October, 2002, pp. 4919-4928CrossRefGoogle Scholar
  67. Kuenzer C., 2008. (Lead Author), Galal H., Galal H., (Topic Editor), 2008. Coal fires. In: Encyclopedia of Earth. Eds. Cutler J. Cleveland (Eds.) Available at: www.eoearth.org/rticle/Coal_ fires
  68. Lacerda L.D., 1995. Amazon mercury emissions. Nature, 374: 20-21.CrossRefGoogle Scholar
  69. Landis M.S., Lewis C.W., Stevens R.K., Keeler G.J., Dvonch J.T., Tremblay R.T., 2007. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmospheric Environment, 41: 8711-8724.CrossRefGoogle Scholar
  70. Leaner J.J., Ashton P.J., Mason R.P., Kim E-H., Murray K., Dabrowski J.M., 2006. The Status of Mercury Research in South Africa. 8th International Conference on Mercury as a Global Pollutant, Madison, Wisconsin, August 2006.Google Scholar
  71. Leaner J., Dabrowski J., Mason R., Resane T., Richardson M., Ginster M., Euripides R., Masekoameng E., 2008. Mercury emissions from point sources in South Africa. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  72. Liang L., Horvat M., Danilchik P., 1996. A Novel Analytical Method for Determination of Picogram Levels of Total Mercury in Gasoline and Other Petroleum Based Products. Sci Tot Environ., 187, 57-64.CrossRefGoogle Scholar
  73. Liang L., Lazoff S., Horvat M., Swain E., Gilkeson J., 2000. Determination of Mercury in Crude Oil by In Situ Thermal Decomposition Using a Simple Lab Built System. J. Anal. Chem., 367, 8-11.CrossRefGoogle Scholar
  74. Lindberg S.E., Price J.L., 1999a. Airborne emissions of mercury from municipal landfill operations: A short-term measurement study in Florida. J. Air & Waste Management Association, 49: 520-532.Google Scholar
  75. Lindberg S.E., Roy K., Owens J., 1999b. Pathways of mercury in solid waste disposal. ORNL sampling operations summary and preliminary data report for PaMSWaD-I, Brevard County Landfill, February 6.Google Scholar
  76. Lindberg S., Bullock R., Ebinghaus R., Engstrom D., Feng X., Fitzgerald W., Pirrone N., Prestbo E., Seigneur C., 2007. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, Vol. 36, No. 1, pp.19-32.CrossRefGoogle Scholar
  77. Lodenius M., 1998. Dry and wet deposition of mercury near a chlor-alkali plant. The Science of the Total Environment, 213 (1–3): 53-56.CrossRefGoogle Scholar
  78. Lodenius M., Tulisalo E., Soltanpour-Gargar A., 2003. Exchange of mercury between atmosphere and vegetation under contaminated conditions. The Science of the Total Environment 304 (1–3), 169–174.CrossRefGoogle Scholar
  79. Maine Department of Environmental Protection, 2003. A Strategy to Reduce the Mercury Content of Products: Report to the Joint Standing Committee on Natural Resources, January 2003, http://mainegov-images.informe.org/dep/mercury/productsweb.pdf
  80. Mason R., 2008. Mercury Emissions from Natural Sources and their Importance in the Global Mercury Cycle. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  81. Mather T.A., Pyle D.M., 2004. Comment on Volcanic emissions of mercury to the atmosphere: global and regional inventories Sci. Tot. Env., 327, 323-329.CrossRefGoogle Scholar
  82. Maxson P., Vonkeman G., 1996. Heavy metals in products. Ministry of Housing, Spatial Planning and Environment, Directorate-General for Environmental Protection, The Hauge', Publikatiereeks Produktenbeleid nr. 1996/17.Google Scholar
  83. Maxson P., 2003. Mercury flows in Europe and the world: The impact of decommissioned chlor-alkali plants. Draft final report 22 August 2003Google Scholar
  84. Meijer P.J., 2001. Short survey of dangerous waste containing mercury in The Netherlands. Laboratory for Waste and Emissions, National Institute of Public Health and the Environment, Unpublished data.Google Scholar
  85. Metallgesellschaft, (1939–1998). Metallstatistik 1929–1938; Metallstatistik 1957–1966; Metallstatistik 1981–1991; Metallstatistik 1985–1995; Metallstatistik 1987–1997. Annual volumes of metal statistics. Frankfurt-am-Main, 1939–1998 (in German).Google Scholar
  86. Mukherjee A.B., Zevenhoven R., Brodersen J., Hylander L.D., Bhattacharya P., 2004. Mercury in waste in the European Union: sources, disposal methods and risks. Resources, Conservation and Recycling, 42 (2): 155-182.CrossRefGoogle Scholar
  87. Mukherjee A.B., Zevenhoven R., Bhattacharya P., Sajwan K.S., Kikuchi R., 2008a. Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 52: 571-591.CrossRefGoogle Scholar
  88. Mukherjee A.B., Bhattacharya P., Sarkar A., Zevenhoven R., 2008b. Mercury emissions from industrial sources in India. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  89. Munthe J., Wangberg I., Pirrone N., Iverfeld A., Ferrara R., Ebinghaus R., Feng R., Gårdfeldt K., Keeler G.J., Lanzillotta E., Lindberg S.E., Lu J., Mamane Y., Prestbo E., Schmolke S., Schroder W.H., Sommar J., Sprovieri F., Stevens R.K., Stratton W., Tuncel G., Urba A., 2001. Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmospheric Environment.Vol. 35, 3007-3017.CrossRefGoogle Scholar
  90. Nacht D.M., Gustin M.S., 2004. Mercury emissions frombackground and altered geologic units throughout Nevada. Water, Air and Soil Pollution, 151: 179-193.CrossRefGoogle Scholar
  91. Nelson P.F., 2007. Atmospheric emissions of mercury from Australian point sources. Atmospheric Environment 41: 1717– 1724.CrossRefGoogle Scholar
  92. NEMA, 2001. Fluorescent Lamps and the Environment. National Electrical Manufacturers Association, NEMA01BR.Google Scholar
  93. Nriagu J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49.CrossRefGoogle Scholar
  94. Nriagu J., Becker C., 2003. Volcanic emissions of mercury to the atmosphere: global and regional inventories. Sci. Tot. Env., 304, 3–12.CrossRefGoogle Scholar
  95. Pacyna E.G., Pacyna J.M., Pirrone N., 2001. European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35 (17): 2987-2996.CrossRefGoogle Scholar
  96. Pacyna J.M., Pacyna E.G., Steenhuisen F., Wilson S., 2003. Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37 (S1): S109-S117.CrossRefGoogle Scholar
  97. Pacyna J.M., Munthe J., Larjava K., Pacyna E.G., 2005. Mercury emissions from anthropogenic sources: estimates and measurements for Europe. In: Dynamics of Mercury Pollution on Regional and Global Scales. Atmospheric Processes, Human Health and Policy, (Pirrone and Mahaffey Eds.), Springer Verlag Publishers, Norwell, MA, USA, Chapter 3: 14 pp.Google Scholar
  98. Pacyna E.G., Pacyna J.M., Fudala J., Strzelecka-Jastrzab E., Hlawiczka S., Panasiuk D., 2006a. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science of the Total Environment, 370: 147-156.CrossRefGoogle Scholar
  99. Pacyna E.G., Pacyna J.M., Steenhuisen F., Wilson S., 2006b. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40: 4048-4063.CrossRefGoogle Scholar
  100. Pai P., Niemi D., Powers B., 2000. A North American inventory of anthropogenic mercury emissions. Fuel Processing Technology, 65–66: 101-115.CrossRefGoogle Scholar
  101. Patra M., Sharma A., 2000. Mercury Toxicity In Plants. Botanical Review, 66: 379-422.CrossRefGoogle Scholar
  102. Pirrone N., Keeler G.J., Nriagu O., 1996. Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30 (17): 2981-2987.CrossRefGoogle Scholar
  103. Pirrone N., Allegrini I., Keeler G.J., Nriagu J.O., Rossmann R., Robbins J.A., 1998. Historical Atmospheric Mercury Emissions and Depositions in North America Compared to Mercury Accumulations in Sedimentary Records. Atmospheric Environment, 32, 929- 940.CrossRefGoogle Scholar
  104. Pirrone N., Hedgecock I., Forlano L., 2000. The Role of the Ambient Aerosol in the Atmospheric Processing of Semi-Volatile Contaminants: A Parameterised Numerical Model (GASPAR). Journal of Geophysical Research, 105, D8, 9773-9790.CrossRefGoogle Scholar
  105. Pirrone N., 2001. Mercury Research in Europe: Towards the preparation of the New EU Air Quality Directive. Atmospheric Environment, 35: 2979-2986.CrossRefGoogle Scholar
  106. Pirrone N., Pacyna J.M., Barth H., 2001a. Atmospheric Mercury Research in Europe. Atmospheric Environment, 35 (17): 2997-3006.CrossRefGoogle Scholar
  107. Pirrone N., Costa P., Pacyna J.M., Ferrara R., 2001b. Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources in the Mediterranean region. Atmospheric Environment. Vol. 35, 2997-3006.CrossRefGoogle Scholar
  108. Pirrone N., Munthe J., Barregård L., Ehrlich H.C., Petersen G., Fernandez R., Hansen J.C., Grandjean P., Horvat M., Steinnes E., Ahrens R., Pacyna J.M., Borowiak A., Boffetta P., Wichmann-Fiebig M., 2001c. Ambient Air Pollution by Mercury (Hg) - Position Paper. European Commision, Bruxelles. Available at: europa.eu.int/comm/environment/ ir/ackground.htm# mercuryGoogle Scholar
  109. Pirrone N., Wichmann-Fiebig M., 2003. Some Recommendations on Mercury Measurements and Research Activities in the European Union. Atmospheric Environment.Vol. 37, S-1, 3-8.CrossRefGoogle Scholar
  110. Pirrone N., Ferrara R., Hedgecock I.M., Kallos G., Mamane Y., Munthe J., Pacyna J.M., Pytharoulis I., Sprovieri F., Voudouri A., Wangberg I., 2003. Dynamic Processes of Mercury Over the Mediterranean Region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmospheric Environment.Vol. 37-S1, 21-39.CrossRefGoogle Scholar
  111. Pirrone N., Hedgecock I.M., 2005. Climate Change and the Mercury Biogeochemical Cycle. In: Climate Change and the European Water Dimension: A Report to the European Water Directors 2005. EU Report No. 21553, Eisenreich (Eds.), European Commission- Joint Research Centre, Ispra, Italy, Chapter VI-C, 190-196.Google Scholar
  112. Pirrone N., Mahaffey K., 2005. Where we Stand on Mercury Pollution and its health effects on Regional and Global Scales. In: Dynamics of Mercury Pollution on Regional and Global Scales (Pirrone N. and Mahaffey K. Eds.), Springer Verlag Publishers, Norwell, MA, USA. Chapter 1, pp.1- 21. CrossRefGoogle Scholar
  113. Pirrone N., Sprovieri S., Hedgecock I., Trunfio A., Cinnirella S., 2005. Dynamic Processes of Atmospheric Mercury and its Species in the Mediterranean Region. In: Dynamics of Mercury Pollution on Regional and Global Scales. Atmospheric Processes, Human Health and Policy, (Pirrone and Mahaffey Eds.), Springer Verlag Publishers, Norwell, MA, USA, Chapter 23: 41 CrossRefGoogle Scholar
  114. Prakash A., 2007. Coal Fires in China. Available at: www. gi.alaska.edu/∼prakash/coalfires/ coalfires.html
  115. Pyle D.M., Mather T.A., 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos. Environ., 37: 5115-5124.CrossRefGoogle Scholar
  116. Rea A.W., Lindberg S.E., Scherbatskoy T., 2002. Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, Air and Soil Pollution, 133 (1–4): 49-67.CrossRefGoogle Scholar
  117. Reese, 1981–2000. USA Geological Survey Minerals Yearbook: Mercury. All years 1981–2000.Google Scholar
  118. Rosema A., van Genderen J.L., Schalke H.J.W.G., 1993. Environmental monitoring of coal fires in north China: Project identification Mission Report, BCRS 93-29, ISBN 90 5411 1054.Google Scholar
  119. Roulet M., Lucotte M., Farella N., Serique G., Coelho H., Sousa Passos C.J., De Jesus da Silva E., Scavone de Andrade P., Mergler D., Guimarães J.R.D., Amorim M., 1999. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water, Air and soil pollution, 112: 297-313.CrossRefGoogle Scholar
  120. Schwesig D., Krebs O., 2003. The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant and Soil, 253: 445-455.CrossRefGoogle Scholar
  121. Sigler J.M., Lee X., Munger W., 2003. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environmental Science and Technology, 37: 4343-4347.CrossRefGoogle Scholar
  122. Stracher G.B., Taylor T.P., 2004. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. In: Coal Fires Burning around the World: a Global Catastrophe (Stracher G.B., Ed.), International Journal of Coal Geology, p. 7–17.Google Scholar
  123. Stracher G.B., 2007. Coal fires burning around the world: Opportunity for innovative and interdisciplinary research, GSA Today, Geological Society of America, 17 (11): 36-37.Google Scholar
  124. Stracher G.B., Lindsley-Griffin N., Griffin J.R., Renner S., Schroeder P., Viellenave J.H., Masalehdani M.N.-N., Kuenzer C., 2008. Revisiting the South Cañon Number 1 Coal Mine fire during a geologic excursion from Denver to Glenwood Springs, Colorado. In: [title] (Raynolds R.G., Ed.) Geological Society of America Field Guide 11, doi: 10.1130/2007.fld011(XX). (In press).Google Scholar
  125. Streets D.G., Hao J.M., Wu Y., Jiang J.K., Chan M., Tian H.Z., Feng X.B., 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39: 7789-7806.CrossRefGoogle Scholar
  126. Streets D.G., Hao J., Wang S., Wu Y., 2008. Mercury emissions from coal combustion in China. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  127. Swain E.B., Jakus P., Lupi F., Maxson P., Pacyna J., Penn A., Rice G., Spiegel S., Veiga M, 2007. Socioeconomic Consequences of Mercury Use and Pollution. Ambio: A Journal of the Human Environment, XXXVI (1).Google Scholar
  128. Sznopek J.L., Goonan T.G., 2000. The material flow of mercury in the economies of the United States and theWorld'. US Geological Survey Circular, 1197: 28 p. Available at: greenwood.cr.usgs.gov/circulars/c1197/.Google Scholar
  129. Telmer K., Vega M., 2008. Knowledge Gaps in Mercury Pollution from Gold Mining. In: Mercury Fate and Transport in the Global Atmosphere: Measurements, models and policy implications (Pirrone N. and Mason R. Eds.), UNEP, 2008.Google Scholar
  130. Tewalt S.J., Bragg L.J., Finkelman R.B., 2001. Mercury in U.S. Coal; abundance, distribution and modes of occurrence: U.S. Geological Survey Fact Sheet FS-095-091. Available at: pubs.usgs.gov/factsheet/fs095-01.Google Scholar
  131. UNEP, 2002. Global Mercury Assessment, UNEP, Geneva, SwitzerlandGoogle Scholar
  132. UNEP, 2005. Toolkit for Identification and Quantification of Mercury Releases, UNEP, Geneva, SwitzerlandGoogle Scholar
  133. UNEP, 2006a. Guide for Reducing Major Uses and Releases of Mercury. Available at: www.chem.unep.ch/ mercury/Sector%20Guide%202006.pdf.
  134. UNEP, 2006b. Summary of Supply, Trade and Demand Information on Mercury, UNEP Chemicals, Geneva, Swizerland. Available at: www.chem.unep.ch/mercury/Trade-information.htm
  135. UNEP, 2007. Draft technical guidelines on the environmentally sound management of mercury wastes. UNEP/CHW/OEWG/6/INF/16. Updated after OEWG6 (3rd Draft). Available at: www.basel.int/techmatters/mercury/guidelines/301007.doc
  136. USEPA, 1993. Locating and estimating air emissions from sources of mercury and mercury compounds. September 1993. As cited by Scoullos et al, 2000.Google Scholar
  137. USEPA, 1997. Mercury Study Report to Congress. Office of Air Quality Planning and Standards and Office of Research and Development. U.S. Environmental Protection AgencyGoogle Scholar
  138. USEPA, 2001. Mercury in Petroleum and Natural Gas: Estimation of Emissions from Production, Processing and Combustion; Technical Report Prepared by National Risk Management Research Laboratory, EPA-600/R-01/066.Google Scholar
  139. USEPA, 2002. National Emission Inventory (NEI). Available at: www.epa.gov
  140. USEPA, 2006. Mercury Roadmap. Available at: www.epa.gov/mercury.
  141. USGS, 2004. Minerals Yearbook. U.S. Geological Survey. Available at: minerals.usgs.gov/ minerals/pubs/myb.html.Google Scholar
  142. Veiga M.M., Meech J.A., Onante N., 1994. Mercury pollution from deforestation. Nature, 368: 816-817.CrossRefGoogle Scholar
  143. Walker S., 1999. Uncontrolled fires in coal and coal wastes. International Energy Agency, London. Report CCC/16, 72 p.Google Scholar
  144. Weidinmyer C., Friedli H., 2007. Mercury emission estimates from fires: An initial inventory for the United States, Environ. Sci. Technol., 41, 8092-8098.CrossRefGoogle Scholar
  145. Wilhelm S.M., 2001. Estimate of Mercury Emissions to the Atmosphere from Petroleum. Environmental Science & Technology, 35 (24): 4704-4710CrossRefGoogle Scholar
  146. Wilhelm S.M., Bigham G.N., 2001. Concentration of Total Mercury in Crude Oil Refined in the United States. Paper Presented at the 6th International Conference on Mercury as a Global Pollutant, Minamata, Japan, Oct 15–19, 2001.Google Scholar
  147. Wilhelm S.M., Bloom N., 2000. Mercury in petroleum. Fuel Processing Technology, 63–1: 1-27.CrossRefGoogle Scholar
  148. Won J.H., Park J.Y., Lee T.G., 2007. Mercury emissions from automobiles using gasoline, diesel and LPG. Atmospheric Environment, 41: 7547-7552.CrossRefGoogle Scholar
  149. Woodruff L.G., Harden J.W., Cannon W.F., Gough L.P., 2001. Mercury loss from the forest floor during wildland fire. Eos Transactions AGU, 82(47), Fall Meeting Suppl., Abstract B32B-0117.Google Scholar
  150. Zaccaria M., 2005. L'oro dell'Eritrea, 1897–1914. Africa, LX, 1, pp. 65–110 (in italian).Google Scholar
  151. Zehner R.E., Gustin M.S., 2002. Estimation of Mercury Vapor Flux from Natural Substrate in Nevada. Environmental Science & Technology, 36: 4039-4045.CrossRefGoogle Scholar
  152. ZMWG, 2007. Comments on the planned content of the atmospheric emissions report. Zero Mercury Working Group (ZMWG). Available at: www.chem.unep.ch/mercury

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Nicola Pirrone
    • 1
  • Sergio Cinnirella
    • 2
  • Xinbin Feng
    • 3
  • Robert B. Finkelman
    • 4
  • Hans R. Friedli
    • 5
  • Joy Leaner
    • 6
  • Rob Mason
    • 7
  • Arun B. Mukherjee
    • 8
  • Glenn Stracher
    • 9
  • David G. Streets
    • 10
  • Kevin Telmer
    • 11
  1. 1.CNR-Institute for Atmospheric PollutionRomeItaly
  2. 2.CNR-Institute for Atmospheric Pollution, Division of RendeRendeItaly
  3. 3.Chinese Academy of SciencesGuiyangChina
  4. 4.University of TexasDallasUSA
  5. 5.National Center for Atmospheric ResearchBoulderUSA
  6. 6.CSIR – Natural Resources and the EnvironmentStellenboschSouth Africa
  7. 7.Department of Marine SciencesUniversity of ConnecticutGrotonGrotonUSA
  8. 8.University of HelsinkiHelsinkiFinland
  9. 9.Department of GeologyEast Georgia CollegeSwainsboroUSA
  10. 10.Argonne National LaboratoryArgonneUSA
  11. 11.School of Earth and Ocean Sciences, University of VictoriaCanada

Personalised recommendations