COP-Mediated Vesicle Transport

  • Silvere Pagant
  • Elizabeth Miller
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Transport of lipid and protein within the early secretory pathway is mediated by small transport vesicles that act as molecular taxis, shuttling cargoes between the endoplasmic reticulum (ER) and Golgi apparatus and within the Golgi. These vesicles are sculpted from donor organelles by distinct sets of cytoplasmic coat proteins that deform the lipid bilayer into a highly curved structure while selecting specific cargo proteins for efficient delivery to the acceptor organelle. The COPII coat generates vesicles from the ER membrane that transport newly synthesized proteins to the Golgi, whereas the COPI coat creates vesicles that mediate both retrograde Golgi-to-ER and intra-Golgi trafficking. These distinct cytoplasmic coats represent the minimal machinery required for vesicle formation and share some common mechanisms to drive intracellular protein transport. This chapter highlights the molecular details of COPII- and COPI-mediated vesicular traffic.


Guanine Nucleotide Exchange Factor Cargo Protein Amphipathic Helix Coat Component COPII Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balch WE, Rothman JE. Characterization of protein transport between successive compartments of the Golgi apparatus: Asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys 1985; 240(1):413–25.CrossRefPubMedGoogle Scholar
  2. 2.
    Barlowe C, Orci L, Yeung T et al. COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994; 77(6):895–907.CrossRefPubMedGoogle Scholar
  3. 3.
    Fiedler K, Veit M, Stamnes MA et al. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 1996; 273(5280):1396–9.CrossRefPubMedGoogle Scholar
  4. 4.
    McMahon HT, Mills IG. COP and clathrin-coated vesicle budding: Different pathways, common approaches. Curr Opin Cell Biol 2004; 16(4):379–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Antonny B, Huber I, Paris S et al. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J Biol Chem 1997; 272(49):30848–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Huang M, Weissman JT, Beraud-Dufour S et al. Crystal structure of Sarl-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 2001; 155(6):937–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Goldberg J. Structural basis for activation of ARF GTPase: Mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 1998; 95(2):237–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Barlowe C, Schekman R. SEC 12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 1993; 365(6444):347–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sato K, Sato M, Nakano A. Rerlp as common machinery for the endoplasmic reticulum localization of membrane proteins. Proc Natl Acad Sci USA 1997; 94(18):9693–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Sato M, Sato K, Nakano A. Endoplasmic reticulum localization of Secl2p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain. J Cell Biol 1996; 134(2):279–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Gommel DU, Memon AR, Heiss A et al. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J 2001; 20(23):6751–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Behnia R, Panic B, Whyte JR et al. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 2004; 6(5):405–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Setty SR, Strochlic TI, Tong AH et al. Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Syslp. Nat Cell Biol 2004; 6(5):414–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bi X, Corpina RA, Goldberg J. Structure of the Sec23/24-Sar1 prebudding complex of the COPII vesicle coat. Nature 2002; 419(6904):271–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuoka K, Orci L, Amherdt M et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 1998; 93(2):263–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Matsuoka K, Schekman R, Orci L et al. Surface structure of the COPII-coated vesicle. Proc Natl Acad Sci USA 2001; 98(24):13705–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Stagg SM, Gurkan C, Fowler DM et al. Structure of the Sec13/31 COPII coat cage. Nature 2006; 439(7073):234–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Spang A, Matsuoka K, Hamamoto S et al. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc Natl Acad Sci USA 1998; 95(19):11199–204.CrossRefPubMedGoogle Scholar
  19. 19.
    Antonny B, Madden D, Hamamoto S et al. Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 2001; 3(6):531–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu W, Duden R, Phair RD et al. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J Cell Biol 2005; 168(7):1053–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee SY, Yang JS, Hong W et al. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J Cell Biol 2005; 168(2):281–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Rein U, Andag U, Duden R et al. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol 2002; 157(3):395–404.CrossRefPubMedGoogle Scholar
  23. 23.
    Bigay J, Gounon P, Robineau S et al. Lipid packing sensed by ArfGAPl couples COPI coat disassembly to membrane bilayer curvature. Nature 2003; 426(6966):563–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee MC, Orci L, Hamamoto S et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122(4):605–17.CrossRefPubMedGoogle Scholar
  25. 25.
    Sheetz MP, Singer SJ. Biological membranes as bilayer couples: A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 1974; 71(11):4457–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Peter BJ, Kent HM, Mills IG et al. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 2004; 303(5657):495–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Barlowe C. Signals for COPII-dependent export from the ER: What’s the ticket out? Trends Cell Biol 2003; 13(6):295–300.CrossRefPubMedGoogle Scholar
  28. 28.
    Roberg KJ, Crotwell M, Espenshade P et al. LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 1999; 145(4):659–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Miller E, Antonny B, Hamamoto S et al. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 2002; 21(22):6105–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Shimoni Y, Kurihara T, Ravazzola M et al. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol 2000; 151(5):973–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Mossessova E, Bickford LC, Goldberg J. SNARE selectivity of the COPII coat. Cell 2003; 114(4):483–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller EA, Beilharz TH, Malkus PN et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 2003; 114(4):497–509.CrossRefPubMedGoogle Scholar
  33. 33.
    Miller EA, Liu Y, Barlowe C et al. ER-Golgi transport defects are associated with mutations in the Sed5p-binding domain of the COPII coat subunit, Sec24p. Mol Biol Cell 2005; 16(8):3719–26.CrossRefPubMedGoogle Scholar
  34. 34.
    Cosson P, Letourneur F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 1994; 263(5153):1629–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Harter C, Wieland FT. A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer. Proc Natl Acad Sci USA 1998; 95(20):11649–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Harter C, Pavel J, Coccia F et al. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc Natl Acad Sci USA 1996; 93(5):1902–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Eugster A, Frigerio G, Dale M et al. The alpha-and beta’-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol Biol Cell 2004; 15(3):1011–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Rabouille C, Klumperman J. Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 2005; 6(10):812–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Andag U, Schmitt HD. Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J Biol Chem 2003; 278(51):51722–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Belden WJ, Barlowe C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 2001; 294(5546):1528–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Otte S, Barlowe C. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 2004; 6(12):1189–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Appenzeller C, Andersson H, Kappeler F et al. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1999; 1(6):330–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Cabrera M, Muniz M, Hidalgo J et al. The retrieval function of the KDEL receptor requires PKA phosphorylation of its C-terminus. Mol Biol Cell 2003; 14(10):4114–25.CrossRefPubMedGoogle Scholar
  44. 44.
    Futai E, Hamamoto S, Orci L et al. GTP/GDP exchange by Secl2p enables COPII vesicle bud formation on synthetic liposomes. EMBO J 2004; 23(21):4l46–55.CrossRefGoogle Scholar
  45. 45.
    Niu TK, Pfeifer AC, Lippincott-Schwartz J et al. Dynamics of GBF1, a Brefeldin A-sensitive Arfl exchange factor at the Golgi. Mol Biol Cell 2005; 16(3):1213–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Szul T, Garcia-Mata R, Brandon E et al. Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1. Traffic 2005; 6(5):374–85.CrossRefPubMedGoogle Scholar
  47. 47.
    Goldberg J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 2000; 100(6):671–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Sato K, Nakano A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sarlp-GTP hydrolysis. Nat Struct Mol Biol 2005; 12(2):l67–74.CrossRefGoogle Scholar
  49. 49.
    Forster R, Weiss M, Zimmermann T et al. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 2006; 16(2):173–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Presley JF, Ward TH, Pfeifer AC et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 2002; 417(6885):187–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Hammond AT, Glick BS. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 2000; 11(9):3013–30.PubMedGoogle Scholar
  52. 52.
    Rossanese OW, Soderholm J, Bevis BJ et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 1999; 145(1):69–81.CrossRefPubMedGoogle Scholar
  53. 53.
    Becker B, Bolinger B, Melkonian M. Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol 1995; 5(8):305–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Palade G. Intracellular aspects of the process of protein synthesis. Science 1975; 189(4200):347–58.CrossRefPubMedGoogle Scholar
  55. 55.
    Bannykh SI, Balch WE. Membrane dynamics at the endoplasmic reticulum-Golgi interface. J Cell Biol 1997; 138(1):1–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Bevis BJ, Hammond AT, Reinke CA et al. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 2002; 4(10):750–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Orci L. Macro-and micro-domains in the endocrine pancreas. Diabetes 1982; 31(6 Pt 1):538–65.PubMedGoogle Scholar
  58. 58.
    Orci L, Ravazzola M, Meda P et al. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc Natl Acad Sci USA 1991; 88(19):86ll–5.CrossRefGoogle Scholar
  59. 59.
    Mezzacasa A, Helenius A. The transitional ER defines a boundary for quality control in the secretion of ts045 VSV glycoprotein. Traffic 2002; 3(11):833–49.CrossRefPubMedGoogle Scholar
  60. 60.
    Weissman JT, Plutner H, Balch WE. The mammalian guanine nucleotide exchange factor mSec12 is essential for activation of the Sari GTPase directing endoplasmic reticulum export. Traffic 2001; 2(7):465–75.CrossRefPubMedGoogle Scholar
  61. 61.
    Soderholm J, Bhattacharyya D, Strongin D et al. The transitional ER localization mechanism of Pichia pastoris Sec12. Dev Cell 2004; 6(5):649–59.CrossRefPubMedGoogle Scholar
  62. 62.
    Connerly PL, Esaki M, Montegna EA et al. Sec16 is a determinant of transitional ER organization. Curr Biol 2005; 15(16):1439–47.CrossRefPubMedGoogle Scholar
  63. 63.
    Espenshade P, Gimeno RE, Holzmacher E et al. Yeast SEC 16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol 1995; 131(2):311–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Supek F, Madden DT, Hamamoto S et al. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol 2002; 158(6):1029–38.CrossRefPubMedGoogle Scholar
  65. 65.
    Kweon HS, Beznoussenko GV, Micaroni M et al. Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 2004; 15(10):4710–4724.CrossRefPubMedGoogle Scholar
  66. 66.
    Muniz M, Morsomme P, Riezman H. Protein sorting upon exit from the endoplasmic reticulum. Cell 2001; 104(2):313–20.CrossRefPubMedGoogle Scholar
  67. 67.
    Mironov AA, Mironov Jr AA, Beznoussenko GV et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 2003; 5(4):583–94.CrossRefPubMedGoogle Scholar
  68. 68.
    Zeuschner D, Geerts WJ, van Donselaar E et al. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 2006.Google Scholar
  69. 69.
    Jones B, Jones EL, Bonney SA et al. Mutations in a Sari GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet 2003; 34(1):29–31.CrossRefPubMedGoogle Scholar
  70. 70.
    Xu D, Hay JC. Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J Cell Biol 2004; 167(6):997–1003.CrossRefPubMedGoogle Scholar
  71. 71.
    Marsh BJ, Volkmann N, McIntosh JR et al. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 2004; 101(15):5565–70.CrossRefPubMedGoogle Scholar
  72. 72.
    Trucco A, Polishchuk RS, Martella O et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 2004; 6(11):1071–81.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations