Advertisement

Entry into the Endoplasmic Reticulum: Protein Translocation, Folding and Quality Control

  • Sheara W. Fewell
  • Jeffrey L. Brodsky
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Secretory proteins enter the ER after or concomitant with their synthesis on cytoplasmic ribosomes in a process known as translocation. In either case, nascent secretory proteins must be targeted to the translocation machinery at the ER membrane and must traverse the lipid bilayer of the ER through the translocation channel. Molecular chaperones in the cytosol and ER lumen assist translocation and facilitate protein folding and assembly in the lumen. Proteins that achieve their native conformation exit the ER and continue through the secretory pathway. Incompletely folded or unassembled proteins are recognized by a constitutively active quality control pathway in the ER that identifies aberrant proteins and targets them for destruction in the cytosol by the proteasome. This process is known as ER associated degradation (ERAD).

Keywords

Endoplasmic Reticulum Cystic Fibrosis Transmembrane Conductance Regulator Endoplasmic Reticulum Membrane Protein Translocation Signal Recognition Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manting EH, Driessen AJ. Escherichia coli translocase: The unravelling of a molecular machine. Mol Microbiol 2000; 37(2):226–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Mori H, Cline K. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta 2001; 1541(1–2):80–90.PubMedGoogle Scholar
  3. 3.
    Pfanner N, Chacinska A. The mitochondrial import machinery: Preprotein-conducting channels with binding sites for presequences. Biochim Biophys Acta 2002; 1592(1): 15–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Subramani S, Koller A, Snyder WB. Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 2000; 69:399–418.PubMedCrossRefGoogle Scholar
  6. 6.
    Schnell DJ, Hebert DN. Protein translocons: Multifunctional mediators of protein translocation across membranes. Cell 2003; 112(4):491–505.PubMedCrossRefGoogle Scholar
  7. 7.
    Martoglio B, Dobberstein B. Signal sequences: More than just greasy peptides. Trends Cell Biol 1998; 8(10):410–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Weihofen A, Binns K, Lemberg MK et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002; 296(5576):2215–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Nilsson I, Whitley P, von Heijne G. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J Cell Biol 1994; 126(5): 1127–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Ng DT, Brown JD, Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 1996; 134(2):269–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicchitta CV. A platform for compartmentalized protein synthesis: Protein translation and translocation in the ER. Curr Opin Cell Biol 2002; 14(4):412–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Keenan RJ, Freymann DM, Stroud RM et al. The signal recognition particle. Annu Rev Biochem 2001; 70:755–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Wild K, Weichenrieder O, Strub K et al. Towards the structure of the mammalian signal recognition particle. Curr Opin Struct Biol 2002; 12(1):72–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Batey RT, Rambo RP, Lucast L et al. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 2000; 287(5456): 1232–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Wild K, Sinning I, Cusack S. Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Science 2001; 294(5542):598–601.PubMedCrossRefGoogle Scholar
  16. 16.
    Weichenrieder O, Stehlin C, Kapp U et al. Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. RNA 2001; 7(5):731–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Flanagan JJ, Chen JC, Miao Y et al. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J Biol Chem 2003; 278(20): 18628–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiedmann B, Sakai H, Davis TA et al. A protein complex required for signal-sequence-specific sorting and translocation. Nature 1994; 370(6489):434–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Neuhof A, Rolls MM, Jungnickel B et al. Binding of signal recognition particle gives ribosome/ nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction. Mol Biol Cell 1998; 9(1):103–15.PubMedGoogle Scholar
  20. 20.
    Raden D, Gilmore R. Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex. Mol Biol Cell 1998; 9(1):117–30.PubMedGoogle Scholar
  21. 21.
    Bernstein HD, Poritz MA, Strub K et al. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 1989; 340(6233):482–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Romisch K, Webb J, Herz J et al. Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 1989; 340(6233):478–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Connolly T, Gilmore R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 1989; 57(4):599–610.PubMedCrossRefGoogle Scholar
  24. 24.
    Rapiejko PJ, Gilmore R. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 1997; 89(5):703–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Connolly T, Rapiejko PJ, Gilmore R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 1991; 252(5010):1171–3.CrossRefGoogle Scholar
  26. 26.
    Miller JD, Wilhelm H, Gierasch L et al. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 1993; 366(6453):351–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Bacher G, Lutcke H, Jungnickel B et al. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 1996; 381 (6579):248–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Althoff S, Selinger D, Wise JA. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res 1994; 22(11):1933–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwartz T, Blobel G. Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor. Cell 2003; 112(6):793–803.PubMedCrossRefGoogle Scholar
  30. 30.
    Helmers J, Schmidt D, Glavy JS et al. The β-subunit of the protein-conducting channel of the endoplasmic reticulum functions as the guanine nucleotide exchange factor for the β-subunit of the signal recognition particle receptor. J Biol Chem 2003; 278(26):23686–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Savitz AJ, Meyer DI. Identification of a ribosome receptor in the rough endoplasmic reticulum. Nature 1990; 346(6284):540–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Prinz A, Hartmann E, Kalies KU. Sec61p is the main ribosome receptor in the endoplasmic reticulum of Saccharomyces cerevisiae. Biol Chem 2000; 381(9–10): 1025–9.CrossRefGoogle Scholar
  33. 33.
    Morrow MW, Brodsky JL. Yeast ribosomes bind to highly purified reconstituted Sec6lp complex and to mammalian pl80. Traffic 2001; 2(10):705–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Song W, Raden D, Mandon EC et al. Role of Sec6l alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 2000; 100(3):333–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Potter MD, Nicchitta CV. Regulation of ribosome detachment from the mammalian endoplasmic reticulum membrane. J Biol Chem 2000; 275(43):33828–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Seiser RM, Nicchitta CV. The fate of membrane-bound ribosomes following the termination of protein synthesis. J Biol Chem 2000; 275(43):33820–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Potter MD, Nicchitta CV. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem 2002; 277(26):23314–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Diehn M, Eisen MB, Botstein D et al. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 2000; 25(1):58–62.Google Scholar
  39. 39.
    Christensen AK, Bourne CM. Shape of large bound polysomes in cultured fibroblasts and thyroid epithelial cells. Anat Rec 1999; 255(2):116–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Hann BC, Walter P. The signal recognition particle in S. cerevisiae. Cell 1991; 67(1): 131–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Ogg SC, Poritz MA, Walter P. Signal recognition particle receptor is important for cell growth and protein secretion in Saccharomyces cerevisiae. Mol Biol Cell 1992; 3(8):895–911.PubMedGoogle Scholar
  42. 42.
    Brown JD, Hann BC, Medzihradszky KF et al. Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. EMBO J 1994; 13(18):4390–400.PubMedGoogle Scholar
  43. 43.
    Rothblatt JA, Deshaies RJ, Sanders SL et al. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J Cell Biol 1989; 109(6 Pt 1):2641–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Zimmermann R, Sagstetter M, Lewis MJ et al. Seventy-kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J 1988; 7(9):2875–80.PubMedGoogle Scholar
  45. 45.
    Deshaies RJ, Koch BD, Werner-Washburne M et al. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988; 332(6167):800–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Plath K, Rapoport TA. Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J Cell Biol 2000; 151(1):167–78.PubMedCrossRefGoogle Scholar
  47. 47.
    Ngosuwan J, Wang NM, Fung KL et al. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol Chem 2003; 278(9):7034–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Chirico WJ, Waters MG, Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 332(6167):805–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Matlack KE, Misselwitz B, Plath K et al. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 1999; 97(5):553–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Caplan AJ, Douglas MG. Characterization of YDJ1: A yeast homologue of the bacterial dnaj protein. J Cell Biol 1991; 114(4):609–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Becker J, Walter W, Yan W et al. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydjlp, in protein translocation in vivo. Mol Cell Biol 1996; 16(8):4378–86.Google Scholar
  52. 52.
    McClellan AJ, Brodsky JL. Mutation of the ATP-binding pocket of SSA1 indicates that a functional interaction between Ssalp and Ydjlp is required for post-translational translocation into the yeast endoplasmic reticulum. Genetics 2000; 156(2):501–12.PubMedGoogle Scholar
  53. 53.
    Deshaies RJ, Schekman R. Structural and functional dissection of Sec62p, a membrane-bound component of the yeast endoplasmic reticulum protein import machinery. Mol Cell Biol 1990; 10(11):6024–35.PubMedGoogle Scholar
  54. 54.
    Musch A, Wiedmann M, Rapoport TA Yeast sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 1992; 69(2):343–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Lyman SK, Schekman R. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 1997; 88(1):85–96.CrossRefGoogle Scholar
  56. 56.
    Plath K, Mothes W, Wilkinson BM et al. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998; 94(6):795–807.PubMedCrossRefGoogle Scholar
  57. 57.
    Dunnwald M, Varshavsky A, Johnsson N. Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. Mol Biol Cell 1999; 10(2):329–44.PubMedGoogle Scholar
  58. 58.
    Kutay U, Ahnert-Hilger G, Hartmann E et al. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J 1995; 14(2):217–23.PubMedGoogle Scholar
  59. 59.
    Wattenberg B, Lithgow T. Targeting of C-terminal (tail)-anchored proteins: Understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic 2001; 2(1):66–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Yabal M, Brambillasca S, Soffientini P et al. Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation. J Biol Chem 2003; 278(5):3489–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Beilharz T, Egan B, Silver PA et al. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J Biol Chem 2003; 278(10):8219–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Steel GJ, Brownsword J, Stirling CJ. Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 2002; 41(39):11914–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 1975; 67(3):835–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Deshaies RJ, Schekman R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J Cell Biol 1987; 105(2):633–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Stirling CJ, Rothblatt J, Hosobuchi M et al. Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol Biol Cell 1992; 3(2): 129–42.PubMedGoogle Scholar
  66. 66.
    High S, Gorlich D, Wiedmann M et al. The identification of proteins in the proximity of signal-anchor sequences during their targeting to and insertion into the membrane of the ER. J Cell Biol 1991; 113(1):35–44.PubMedCrossRefGoogle Scholar
  67. 67.
    High S, Martoglio B, Gorlich D et al. Site-specific photocross-linking reveals that Sec6lp and TRAM contact different regions of a membrane-inserted signal sequence. J Biol Chem 1993; 268(35):26745–51.PubMedGoogle Scholar
  68. 68.
    Kellaris KV, Bowen S, Gilmore R. ER translocation intermediates are adjacent to a nonglycosylated 34-kD integral membrane protein. J Cell Biol 1991; 114(1):21-33.Google Scholar
  69. 69.
    Thrift RN, Andrews DW, Walter P et al. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation. J Cell Biol 1991; 112(5):809–821.PubMedCrossRefGoogle Scholar
  70. 70.
    Gorlich D, Hartmann E, Prehn S et al. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 1992; 357(6373):47–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Mothes W, Prehn S, Rapoport TA. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J 1994; 13(17):3973–3982.PubMedGoogle Scholar
  72. 72.
    Jungnickel B, Rapoport TA. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 1995; 82(2):261–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Panzner S, Dreier L, Hartmann E et al. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 1995; 81(4):561–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Finke K, Plath K, Panzner S et al. A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J 1996; 15(7):1482–94.PubMedGoogle Scholar
  75. 75.
    Hanein D, Matlack KE, Jungnickel B et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 1996; 87(4):721–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Menetret JF, Neuhof A, Morgan DG et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 2000; 6(5):1219–32.PubMedCrossRefGoogle Scholar
  77. 77.
    Beckmann R, Spahn CM, Eswar N et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 2001; 107(3):361–72.PubMedCrossRefGoogle Scholar
  78. 78.
    Hamman BD, Chen JC, Johnson EE et al. The aqueous pore through the translocon has a diameter of 40–60 A during cotranslational protein translocation at the ER membrane. Cell 1997; 89(4):535–44.PubMedCrossRefGoogle Scholar
  79. 79.
    Hamman BD, Hendershot LM, Johnson AE. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 1998; 92(6):747–58.PubMedCrossRefGoogle Scholar
  80. 80.
    Beckmann R, Bubeck D, Grassucci R et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 1997; 278(5346):2123–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Van den Berg B, Clemons Jr WM, Collinson I et al. X-ray structure of a protein-conducting channel. Nature 2004; 427(6969):36–44.PubMedCrossRefGoogle Scholar
  82. 82.
    Kowarik M, Kung S, Martoglio B et al. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell 2002; 10(4):769–78.PubMedCrossRefGoogle Scholar
  83. 83.
    Simon SM, Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell 1992; 69(4):677–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Crowley KS, Liao S, Worrell VE et al. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 1994; 78(3):46l–71.CrossRefGoogle Scholar
  85. 85.
    Nicchitta CV, Zheng T. Regulation of the ribosome-membrane junction at early stages of presecretory protein translocation in the mammalian endoplasmic reticulum. J Cell Biol 1997; 139(7):1697–708.PubMedCrossRefGoogle Scholar
  86. 86.
    Chuck SL, Yao Z, Blackhart BD et al. New variation on the translocation of proteins during early biogenesis of apolipoprotein B. Nature 1990; 346(6282):382–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Chuck SL, Lingappa VR. Pause transfer: A topogenic sequence in apolipoprotein B mediates stopping and restarting of translocation. Cell 1992; 68(1):9–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Hegde RS, Lingappa VR. Sequence-specific alteration of the ribosome-membrane junction exposes nascent secretory proteins to the cytosol. Cell 1996; 85(2):217–28.PubMedCrossRefGoogle Scholar
  89. 89.
    Liao S, Lin J, Do H et al. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 1997; 90(l):31–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Haigh NG, Johnson AE. A new role for BiP: Closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 2002; 156(2):26l–70.CrossRefGoogle Scholar
  91. 91.
    Gorlich D, Rapoport TA. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993; 75(4):615–30.PubMedCrossRefGoogle Scholar
  92. 92.
    Meyer HA, Grau H, Kraft R et al. Mammalian sec6l is associated with sec62 andsec63. J Biol Chem 2000; 275(19):14550–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Tyedmers J, Lerner M, Bies C et al. Homologs of the yeast sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Nad Acad Sci USA 2000; 97(13):72l4–9.CrossRefGoogle Scholar
  94. 94.
    Deshaies RJ, Sanders SL, Feldheim DA et al. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 1991; 349 (6312):806–8.Google Scholar
  95. 95.
    Feldheim D, Yoshimura K, Admon A et al. Structural and functional characterization of Sec66p, a new subunit of the polypeptide translocation apparatus in the yeast endoplasmic reticulum. Mol Biol Cell 1993; 4(9):931–9.PubMedGoogle Scholar
  96. 96.
    Kurihara T, Silver P. Suppression of a sec63 mutation identifies a novel component of the yeast endoplasmic reticulum translocation apparatus. Mol Biol Cell 1993; 4(9):919–30.PubMedGoogle Scholar
  97. 97.
    Feldheim D, Rothblatt J, Schekman R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol Cell Biol 1992; 12(7):3288–96.PubMedGoogle Scholar
  98. 98.
    Brodsky JL, Schekman R. A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 1993; 123(6.Pt l):1355–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Sanders SL, Whitfield KM, Vogel JP et al. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 1992; 69(2):353–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Wilkinson BM, Tyson JR, Stirling CJ. Sshlp determines the translocation and dislocation capacities of the yeast endoplasmic reticulum. Dev Cell 2001; l(3):401–9.CrossRefGoogle Scholar
  101. 101.
    Wittke S, Dunnwald M, Albertsen M et al. Recognition of a subset of signal sequences by Sshlp, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae. Mol Biol Cell 2002; 13(7):2223–32.PubMedCrossRefGoogle Scholar
  102. 102.
    Voigt S, Jungnickel B, Hartmann E et al. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol 1996; 134(l):25–35.PubMedCrossRefGoogle Scholar
  103. 103.
    Do H, Falcone D, Lin J et al. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 1996; 85(3):369–78.PubMedCrossRefGoogle Scholar
  104. 104.
    Hegde RS, Voigt S, Rapoport TA et al. TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 1998; 92(5):621–31.PubMedCrossRefGoogle Scholar
  105. 105.
    Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 2003; l60(4):529–39.CrossRefGoogle Scholar
  106. 106.
    Meacock SL, Lecomte FJ, Crawshaw SG et al. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol Biol Cell 2002; 13(12):4114–29.PubMedCrossRefGoogle Scholar
  107. 107.
    Schroder K, Martoglio B, Hofmann M et al. Control of glycosylation of MHC class Il-associated invariant chain by translocon-associated RAMP4. EMBO J 1999; 18(17):4804–15.PubMedCrossRefGoogle Scholar
  108. 108.
    Kalies KU, Rapoport TA, Hartmann E. The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 1998; l41(4):887–94.CrossRefGoogle Scholar
  109. 109.
    Kelleher DJ, Kreibich G, Gilmore R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 1992; 69(1):55–65.PubMedCrossRefGoogle Scholar
  110. 110.
    Corsi AK, Schekman R. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J Cell Biol 1997; 137(7):1483–93.PubMedCrossRefGoogle Scholar
  111. 111.
    McClellan AJ, Endres JB, Vogel JP et al. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell 1998; 9(12):3533–45.PubMedGoogle Scholar
  112. 112.
    Misselwitz B, Staeck O, Rapoport TA. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol Cell 1998; 2(5):593–603.PubMedCrossRefGoogle Scholar
  113. 113.
    Vogel JP, Misra LM, Rose MD. Loss of BiP/GRP78 function blocks translocation of secretory pro-teins in yeast. J Cell Biol 1990; 110(6):1885–95.PubMedCrossRefGoogle Scholar
  114. 114.
    Brodsky JL, Hamamoto S, Feldheim D et al. Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70. J Cell Biol 1993; 120 (1):95–102.Google Scholar
  115. 115.
    Simon SM, Peskin CS, Oster GF. What drives the translocation of proteins? Proc Natl Acad Sci USA 1992; 89(9):3770–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Liebermeister W, Rapoport TA, Heinrich R. Ratcheting in post-translational protein translocation: A mathematical model. J Mol Biol 2001; 305(3):643–56.PubMedCrossRefGoogle Scholar
  117. 117.
    Tyedmers J, Lerner M, Wiedmann M et al. Polypeptide-binding proteins mediate completion of cotranslational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 2003; 4(5):505–10.PubMedCrossRefGoogle Scholar
  118. 118.
    Lyman SK, Schekman R. Interaction between BiP and Sec63p is required for the completion of protein translocation into the ER of Saccharomyces cerevisiae. J Cell Biol 1995; 131(5):1163–71.PubMedCrossRefGoogle Scholar
  119. 119.
    Brodsky JL, Goeckeler J, Schekman R. BiP and Sec63p are required for both co and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 1995; 92(21):9643–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Young BP, Craven RA, Reid PJ et al. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 2001; 20(l-2):262–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Martoglio B, Hofmann MW, Brunner J et al. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 1995; 81(2):207–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Mothes W, Heinrich SU, Graf R et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 1997; 89(4):523–33.PubMedCrossRefGoogle Scholar
  123. 123.
    Heinrich SU, Mothes W, Brunner J et al. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 2000; 102(2):233–44.PubMedCrossRefGoogle Scholar
  124. 124.
    McCormick PJ, Miao Y, Shao Y et al. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol Cell 2003; 12(2):329–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Heinrich SU, Rapoport TA. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J 2003; 22(14):3654–63.PubMedCrossRefGoogle Scholar
  126. 126.
    Hartmann E, Rapoport TA, Lodish HF. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 1989; 86(15):5786–90.PubMedCrossRefGoogle Scholar
  127. 127.
    Mingarro I, Nilsson I, Whitley P et al. Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol 2000; 1(1):3.PubMedCrossRefGoogle Scholar
  128. 128.
    Bulleid NJ, Bassel-Duby RS, Freedman RB et al. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation. Biochem J 1992; 286(Pt 1):275–80.PubMedGoogle Scholar
  129. 129.
    Whitley P, Nilsson IM, von Heijne G. A nascent secretory protein may traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain. J Biol Chem 1996; 271(ll):624l–4.Google Scholar
  130. 130.
    Chen X, VanValkenburgh C, Liang H et al. Signal peptidase and oligosaccharyltransferase interact in a sequential and dependent manner within the endoplasmic reticulum. J Biol Chem 2001; 276(4):24ll–6.CrossRefGoogle Scholar
  131. 131.
    Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001; 291(5512):2364–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Gaut JR, Hendershot LM. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 1993; 5(4):589–95.PubMedCrossRefGoogle Scholar
  133. 133.
    Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381(6583):571–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Frand AR, Cuozzo JW, Kaiser CA. Pathways for protein disulphide bond formation. Trends Cell Biol 2000; 10(5):203–10.PubMedCrossRefGoogle Scholar
  135. 135.
    Fewell SW, Travers KJ, Weissman JS et al. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2001; 35:149–91.PubMedCrossRefGoogle Scholar
  136. 136.
    Meunier L, Usherwood YK, Chung KT et al. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 2002; 13(12):4456–69.PubMedCrossRefGoogle Scholar
  137. 137.
    Ellgaard L, Molinari M, Helenius A. Setting the standards: Quality control in the secretory pathway. Science 1999; 286(5446):1882–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Oliver JD, Roderick HL, Llewellyn DH et al. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999; 10(8):2573–82.PubMedGoogle Scholar
  139. 139.
    Hebert DN, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995; 81(3):425–33.PubMedCrossRefGoogle Scholar
  140. 140.
    Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem 2000; 69:69–93.PubMedCrossRefGoogle Scholar
  141. 141.
    Fernandez F, D’Alessio C, Fanchiotti S et al. A misfolded protein conformation is not a sufficient condition for in vivo glucosylation by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J 1998; 17(20):5877–86.PubMedCrossRefGoogle Scholar
  142. 142.
    Ritter C, Helenius A. Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose: Glycoprotein glucosyltransferase. Nat Struct Biol 2000; 7(4):278–80.PubMedCrossRefGoogle Scholar
  143. 143.
    Sousa MaP AJ. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc: Glycoprotein glucosyltransferase. EMBO J 1995; 14:4196–203.PubMedGoogle Scholar
  144. 144.
    Caramelo JJ, Castro OA, Alonso LG et al. UDP-Glc: Glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci USA 2003; 100(1):86–91.PubMedCrossRefGoogle Scholar
  145. 145.
    Daniels R, Kurowski B, Johnson AE et al. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 2003; ll(l):79–90.CrossRefGoogle Scholar
  146. 146.
    Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288(5464):331–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Harter C, Wieland F. The secretory pathway: Mechanisms of protein sorting and transport. Biochim Biophys Acta 1996; 1286(2):75–93.PubMedGoogle Scholar
  148. 148.
    Barlowe C. Traffic COPs of the early secretory pathway. Traffic 2000; 1(5):371–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Antonny B, Schekman R. ER export: Public transportation by the COPII coach. Curr Opin Cell Biol 2001; 13(4):438–43.PubMedCrossRefGoogle Scholar
  150. 150.
    Letourneur F, Gaynor EC, Hennecke S et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994; 79(7):1199–207.PubMedCrossRefGoogle Scholar
  151. 151.
    Majoul I, Straub M, Hell SW et al. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET. Dev Cell 2001; 1(1):139–53.PubMedCrossRefGoogle Scholar
  152. 152.
    Lewis MJ, Pelham HR. A human homologue of the yeast HDEL receptor. Nature 1990; 348 (6297):162–3.Google Scholar
  153. 153.
    Semenza JC, Hardwick KG, Dean N et al. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 1990; 61(7):1349–57.PubMedCrossRefGoogle Scholar
  154. 154.
    Ma DaJ LY. ER transport signals and trafficking of potassium channels and receptors. Curr Opin Neurobiol 2002; 12:287–92.CrossRefGoogle Scholar
  155. 155.
    McCracken AA, Brodsky JL. Assembly of ER-associated protein degradation in vitro: Dependence on cytosol, calnexin, and ATP. J Cell Biol 1996; 132(3):291–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 2002; 3(4):246–55.PubMedCrossRefGoogle Scholar
  157. 157.
    Hampton RY. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002; l4(4):476–82.CrossRefGoogle Scholar
  158. 158.
    Kostova Z, Wolf DH. New EMBO member’s review: For whom the bell tolls: Protein quality control of the endoplasmic reticulum and the ubiquinn-proteasome connection. EMBO J 2003; 22(10):2309–17.PubMedCrossRefGoogle Scholar
  159. 159.
    Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals. Curr Opin Cell Biol 2001; 13(3):349–55.PubMedCrossRefGoogle Scholar
  160. 160.
    Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92(3):351–66.PubMedCrossRefGoogle Scholar
  161. 161.
    Plemper RK, Bohmler S, Bordallo J et al. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 1997; 388(6645):891–5.PubMedCrossRefGoogle Scholar
  162. 162.
    Brodsky JL, Werner ED, Dubas ME et al. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 1999; 274(6):3453–60.PubMedCrossRefGoogle Scholar
  163. 163.
    Gillece P, Luz JM, Lennarz WJ et al. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 1999; 147(7):1443–56.PubMedCrossRefGoogle Scholar
  164. 164.
    Yang Y, Janich S, Cohn JA et al. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded ina preGolgi nonlysosomal compartment. Proc Natl Acad Sci USA 1993; 90:9480-4.Google Scholar
  165. 165.
    Pind S, Riordan JR, Williams DB. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 1994; 269(17):12784–8.PubMedGoogle Scholar
  166. 166.
    Molinari M, Galli C, Piccaluga V et al. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 2002; 158(2):247–57.PubMedCrossRefGoogle Scholar
  167. 167.
    Skowronek MH, Hendershot LM, Haas IG. The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proc Natl Acad Sci USA 1998; 95(4):1574–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Chillaron J, Haas IG. Dissociation from BiP and retro translocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol Biol Cell 2000; 11(1):217–26.PubMedGoogle Scholar
  169. 169.
    Nishikawa SI, Fewell SW, Kato Y et al. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 2001; 153(5):1061–70.PubMedCrossRefGoogle Scholar
  170. 170.
    Kabani M, Kelley SS, Morrow MM et al. Dependence of endoplasmic reticulum associated degradation (ERAD) on the peptide binding domain and concentration of BiP. Mol Biol Cell 2003; 14:3437–48.PubMedCrossRefGoogle Scholar
  171. 171.
    Hosokawa N, Wada I, Hasegawa K et al. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2001; 2(5):4l5–22.Google Scholar
  172. 172.
    Nakatsukasa K, Nishikawa S, Hosokawa N et al. Mnllp, an alpha-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 2001; 276(12):8635–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Jakob CA, Bodmer D, Spirig U et al. Htmlp, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2001; 2(5):423–30.PubMedGoogle Scholar
  174. 174.
    Molinari M, Calanca V, Galli C et al. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003; 299(5611):1397–400.PubMedCrossRefGoogle Scholar
  175. 175.
    Oda Y, Hosokawa N, Wada I et al. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003; 299(5611):1394–7.PubMedCrossRefGoogle Scholar
  176. 176.
    McCracken AA, Brodsky JL. Evolving questions and paradigm shifts in the endoplasmic reticulum associated degradation (ERAD). BioAssays 2003; 25:868–77.CrossRefGoogle Scholar
  177. 177.
    Wu Y, Swulius MT, Moremen KW et al. Elucidation of the molecular logic by which misfolded ∼alpha∼ 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci USA 2003.Google Scholar
  178. 178.
    Hosokawa N, Tremblay LO, You Z et al. Enhancement of ER degradation of misfolded null Hong Kong alpha 1-antitrypsin by human ER mannosidase I. J Biol Chem 2003.Google Scholar
  179. 179.
    Swanton E, High S, Woodman P. Role of calnexin in the glycan-independent quality control of proteolipid protein. EMBO J 2003; 22(12):2948–58.PubMedCrossRefGoogle Scholar
  180. 180.
    Arvan P, Zhao X, Ramos-Castaneda J et al. Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 2002; 3(11):771–80.PubMedCrossRefGoogle Scholar
  181. 181.
    Coughlan CM, Walker JL, Cochran JC et al. Degradation of mutated bovine pancreatic trypsin inhibitor (BPTI) in the yeast vacuole suggests post-endoplasmic reticulum protein quality control. J Biol Chem 2004; 279:15289–97.PubMedCrossRefGoogle Scholar
  182. 182.
    Spear ED, Ng D. Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 2003; 14:2756–67.PubMedCrossRefGoogle Scholar
  183. 183.
    Wiertz EJ, Tortorella D, Bogyo M et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996; 384(6608):432–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Pilon M, Schekman R, Romisch K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 1997; 16(15):4540–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Wilkinson BM, Tyson JR, Reid PJ et al. Distinct domains within yeast Sec61p involved in post-translational translocation and protein dislocation. J Biol Chem 2000; 275(l):521–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Zhou M, Schekman R. The engagement of Sec61p in the ER dislocation process. Mol Cell 1999; 4(6):925–34.PubMedCrossRefGoogle Scholar
  187. 187.
    Caldwell SR, Hill KJ, Cooper AA. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 2001; 276(26):23296–303.PubMedCrossRefGoogle Scholar
  188. 188.
    Vashist S, Kim W, Belden WJ et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 2001; 155(3):355–68.PubMedCrossRefGoogle Scholar
  189. 189.
    Taxis C, Vogel F, Wolf DH. ER-golgi traffic is a prerequisite for efficient ER degradation. Mol Biol Cell 2002; 13(6):1806–18.PubMedCrossRefGoogle Scholar
  190. 190.
    Johnson AE, Haigh NG. The ER translocon and retrotranslocation: Is the shift into reverse manual or automatic? Cell 2000; 102(6):709–12.PubMedCrossRefGoogle Scholar
  191. 191.
    Greenfield JJ, High S. The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J Cell Sci 1999; 112(Pt 10):1477–86.PubMedGoogle Scholar
  192. 192.
    Zuber C, Fan JY, Guhl B et al. Immunolocalization of UDP-glucose: Glycoprotein glucosyltransferase indicates involvement of preGolgi intermediates in protein quality control. Proc Natl Acad Sci USA 2001; 98(19):10710–5.PubMedCrossRefGoogle Scholar
  193. 193.
    Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503-33.Google Scholar
  194. 194.
    Meacham GC, Patterson C, Zhang W et al. The Hsc70 cochaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 2001; 3(l):100–5.PubMedGoogle Scholar
  195. 195.
    Bays NW, Gardner RG, Seelig LP et al. Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 2001; 3(l):24–9.PubMedGoogle Scholar
  196. 196.
    Deak PM, Wolf DH. Membrane topology and function of Der3/Hrdlp as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J Biol Chem 2001; 276(14):10663–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Imai Y, Soda M, Hatakeyama S et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10(l):55–67.PubMedCrossRefGoogle Scholar
  198. 198.
    Liang JS, Kim T, Fang S et al. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem 2003; 278(26):23984–8.PubMedCrossRefGoogle Scholar
  199. 199.
    de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 1998; 273(16):9734–43.PubMedCrossRefGoogle Scholar
  200. 200.
    Yu H, Kopito RR. The role of multiubiquitination in dislocation and degradation of the alpha subunit of the T cell antigen receptor. J Biol Chem 1999; 274(52):36852–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Jarosch E, Taxis C, Volkwein C et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 2002; 4(2):134–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Ferrell K, Wilkinson CR, Dubiel W et al. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 2000; 25(2):83–8.PubMedCrossRefGoogle Scholar
  203. 203.
    Braun BC, Glickman M, Kraft R et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1999; l(4):221–6.CrossRefGoogle Scholar
  204. 204.
    Strickland E, Hakala K, Thomas PJ et al. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26._S proteasome. J Biol Chem 2000; 275(8):5565–72.PubMedCrossRefGoogle Scholar
  205. 205.
    Lam YA, Lawson TG, Velayutham M et al. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002; 416(6882):763–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Enenkel C, Lehmann A, Kloetzel PM. GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep 1999; 26(1–2):131–5.PubMedCrossRefGoogle Scholar
  207. 207.
    Russell SJ, Steger KA, Johnston SA. Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem 1999; 274(31):21943–52.PubMedCrossRefGoogle Scholar
  208. 208.
    Lee RJ, Liu C, Harty C et al. Retro-translocation and degradation can be uncoupled during the ER associated degradation (ERAD) of a soluble protein. EMBO J 2004; 23:2206–15.PubMedCrossRefGoogle Scholar
  209. 209.
    Mayer TU, Braun T, Jentsch S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 1998; 17(12):3251–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Liu CW, Corboy MJ, DeMartino GN et al. Endoproteolytic activity of the proteasome. Science 2003; 299(5605):408–11.PubMedCrossRefGoogle Scholar
  211. 211.
    Walter J, Urban J, Volkwein C et al. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J 2001; 20(12):3124–31.PubMedCrossRefGoogle Scholar
  212. 212.
    Verma R, Chen S, Feldman R et al. Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 2000; ll(10):3425–39.Google Scholar
  213. 213.
    Connell P, Ballinger CA, Jiang J et al. The cochaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 2001; 3(l):93–6.PubMedGoogle Scholar
  214. 214.
    Luders J, Demand J, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 2000; 275(7):46l3–7.CrossRefGoogle Scholar
  215. 215.
    Bays NW, Hampton RY. Cdc48-Ufdl-Npl4: Stuck in the middle with Ub. Curr Biol 2002; 12(10):R366–71.PubMedCrossRefGoogle Scholar
  216. 216.
    Liu CY, Kaufman RJ. The unfolded protein response. J Cell Sci 2003; 116(Pt 10):1861–2.PubMedCrossRefGoogle Scholar
  217. 217.
    Casagrande R, Stern P, Diehn M et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 2000; 5(4):729–35.PubMedCrossRefGoogle Scholar
  218. 218.
    Travers KJ, Patil CK, Wodicka L et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000; 101(3):249–58.PubMedCrossRefGoogle Scholar
  219. 219.
    Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 1993; 73(6):1197–206.PubMedCrossRefGoogle Scholar
  220. 220.
    Shamu CE, Walter P. Oligomerization and phosphorylation of the Irelp kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 1996; 15(12):3028–39.PubMedGoogle Scholar
  221. 221.
    Welihinda AA, Kaufman RJ. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Irelp (Ernlp) are required for kinase activation. J Biol Chem 1996; 271(30):18181–7.PubMedCrossRefGoogle Scholar
  222. 222.
    Sidrauski C, Walter P. The transmembrane kinase Irelp is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90(6):1031–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Kawahara T, Yanagi H, Yura T et al. Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Haclp/Ern4p that activates the unfolded protein response. Mol Biol Cell 1997; 8(10):1845–62.PubMedGoogle Scholar
  224. 224.
    Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mam malian cells. Genes Dev 1998; 12(12):1812–24.PubMedCrossRefGoogle Scholar
  225. 225.
    Wang XZ, Harding HP, Zhang Y et al. Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J 1998; 17(19):5708–17.PubMedCrossRefGoogle Scholar
  226. 226.
    Yoshida H, Matsui T, Yamamoto A et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107(7):881–91.PubMedCrossRefGoogle Scholar
  227. 227.
    Shi Y, Vattem KM, Sood R et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18(12):7499–509.PubMedGoogle Scholar
  228. 228.
    Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397(6716):271–4.PubMedCrossRefGoogle Scholar
  229. 229.
    Haze K, Yoshida H, Yanagi H et al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10(11):3787–99.PubMedGoogle Scholar
  230. 230.
    Ye J, Rawson RB, Komuro R et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6(6):1355–64.PubMedCrossRefGoogle Scholar
  231. 231.
    Okamura K, Kimata Y, Higashio H et al. Dissociation of Kar2p/BiP from an ER sensory molecule, Irelp, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 2000; 279(2):445–50.PubMedCrossRefGoogle Scholar
  232. 232.
    Bertolotti A, Zhang Y, Hendershot LM et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2(6):326–32.PubMedCrossRefGoogle Scholar
  233. 233.
    Shen J, Chen X, Hendershot L et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3(1):99–111.PubMedCrossRefGoogle Scholar
  234. 234.
    Brodsky JL. Chaperoning the maturation of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Lung Cell Mol Physiol 2001; 281(1):L39–42.PubMedGoogle Scholar
  235. 235.
    Gelman MS, Kopito RR. Rescuing protein conformation: Prospects for pharmacological therapy in cystic fibrosis. J Clin Invest 2002; 110(11):1591–7.PubMedGoogle Scholar
  236. 236.
    Imai Y, Soda M, Inoue H et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105(7):891–902.PubMedCrossRefGoogle Scholar
  237. 237.
    Saliba RS, Munro PM, Luthert PJ et al. The cellular fate of mutant rhodopsin: Quality control, degradation and aggresome formation. J Cell Sci 2002; 115(Pt 14):2907–18.PubMedGoogle Scholar
  238. 238.
    Ma J, Lindquist S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 2001; 98(26): 14955–60.PubMedCrossRefGoogle Scholar
  239. 239.
    Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 2002; 298(5599):1785–8.PubMedCrossRefGoogle Scholar
  240. 240.
    Ma J, Wollmann R, Lindquist S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 2002; 298(5599):1781–5.PubMedCrossRefGoogle Scholar
  241. 241.
    Drisaldi B, Stewart RS, Adles C et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 2003; 278(24):21732–43.PubMedCrossRefGoogle Scholar
  242. 242.
    Kamsteeg EJ, Wormhoudt TA, Rijss JP et al. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 1999; 18(9):2394–400.PubMedCrossRefGoogle Scholar
  243. 243.
    Brown CR, Hong-Brown LQ, Biwersi J et al. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1996; 1(2): 117–25.PubMedCrossRefGoogle Scholar
  244. 244.
    Denning GM, Anderson MP, Amara JF et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperaturesensitive. Nature 1992; 358(6389):761–4.PubMedCrossRefGoogle Scholar
  245. 245.
    Sato S, Ward CL, Krouse ME et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 1996; 271(2):635–8.PubMedCrossRefGoogle Scholar
  246. 246.
    Furman MH, Ploegh HL, Tortorella D. Membrane-specific, host-derived factors are required for US2-and USll-mediated degradation of major histocompatibility complex class I molecules. J Biol Chem 2002; 277(5):3258–67.PubMedCrossRefGoogle Scholar
  247. 247.
    Tsai B, Rodighiero C, Lencer WI et al. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 2001; 104(6):937–48.PubMedCrossRefGoogle Scholar
  248. 248.
    Aridor M, Hannan LA. Traffic jam: A compendium of human diseases that affect intracellular transport processes. Traffic 2000; 1(11):836–51.PubMedCrossRefGoogle Scholar
  249. 249.
    Plemper RK, Wolf DH. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 1999; 24(7):266–70.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations