Advertisement

Overview of Protein Trafficking Mechanisms

  • Giancarlo Costaguta
  • Gregory S. Payne
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The secretory and endocytic pathways in eukaryotic cells serve as major routes for protein transport out of and into the cell. Proteins enter the secretory pathway by translocation into the endoplasmic reticulum. Subsequent protein transport between organelles of the secretory pathway is mediated in large part by membranous carriers that bud from a donor organelle membrane then dock and fuse with the appropriate recipient organelle. Similarly, membrane-bounded carriers shuttle proteins through the endocytic pathway and also between the secretory and endocytic pathways. This chapter presents an overview of our understanding of the mechanisms responsible for critical stages of protein traffic through these pathways.

Keywords

Endocytic Pathway Trans Golgi Network Signal Recognition Particle Snare Complex Coated Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mellman I, Warren G. The road taken: past and future foundations of membrane traffic. Cell 2000; 100(1):99–112.CrossRefPubMedGoogle Scholar
  2. 2.
    De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol 2008; 9(4):273–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Losev E, Reinke CA, Jellen J et al. Golgi maturation visualized in living yeast. Nature 2006; 44l(7096):1002–6.CrossRefGoogle Scholar
  4. 4.
    Matsuura-Tokita K, Takeuchi M, Ichihara A et al. Live imaging of yeast Golgi cisternal maturation. Nature 2006; 441(7096): 1007–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Pelham HR, Rothman JE. The debate about transport in the Golgi—two sides of the same coin? Cell 2000; 102(6):713–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Conibear E, Tam YYC. The endocytic pathway. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:67–83, this volume.Google Scholar
  7. 7.
    Hua Z, Graham TR. The Golgi apparatus. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:42–66, this volume.Google Scholar
  8. 8.
    Fewell SW, Brodsky JL. Entry into the endoplasmic reticulum: protein translocation, folding and quality control. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:119–42, this volume.Google Scholar
  9. 9.
    McPherson PS, Ritter B, Wendland B. Clathrin-mediated endocytosis. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/ Springer Science+Business Media, 2009:159–82, this volume.Google Scholar
  10. 10.
    Pagant S, Miller E. COP-mediated vesicle transport. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:143–58, this volume.Google Scholar
  11. 11.
    Lupashin V, Sztul E. Tethering factors. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:254–81, this volume.Google Scholar
  12. 12.
    Xu D, Hay JC. Intracellular membrane fusion. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:282–326, this volume.Google Scholar
  13. 13.
    Bowman GR, Cowan AT, Turkewitz AP. Biogenesis of dense-core secretory granules. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bio-science/Springer Science+Business Media, 2009:183–209, this volume.Google Scholar
  14. 14.
    Wozniak MJ, Allan VJ. Carrier motility. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:233–53, this volume.Google Scholar
  15. 15.
    Chandra PP, Ktistakis NT. Lipid-dependent membrane remodelling in protein trafficking. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:210–32, this volume.Google Scholar
  16. 16.
    Hegde RS, Kang S-W. The concept of translocation regulation. J Cell Biol 2008; 182(2):225–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Barbieri MA, Wainszelbaum MJ, Stahl PD. Intracellular trafficking and signaling: the role of endocytic Rab GTPase. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:405–18, this volume.Google Scholar
  18. 18.
    Franco M, Chavrier P, Niedergang F. Regulation of protein trafficking by GTP-binding proteins. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:342–62, this volume.Google Scholar
  19. 19.
    Kida Y, Morimoto F, Sakaguchi M. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis. J Cell Biol 2007; 179(7):1441–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Skach WR. The expanding role of the ER translocon in membrane protein folding. J Cell Biol 2007; 179(7): 1333–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Kunio Nakatsukasa JLB. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 2008; 9(6):861–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Traub LM. Common principles in clathrin-mediated sorting at the Golgi and the plasma mem-brane. Biochimica et Biophysica Acta (BBA)–Mol Cell Res 2005; 1744(3):415–37.CrossRefGoogle Scholar
  23. 23.
    Stagg SM, LaPointe P, Balch WE. Structural design of cage and coat scaffolds that direct mem-brane traffic. Curr Opin Struct Biol 2007; 17(2):221–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Tu L, Tai WC, Chen L, Banfield DK. Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 2008; 321(5887):404–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Schmitz KR, Liu J, Li S et al. Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 2008;l4(4):523–34.CrossRefGoogle Scholar
  26. 26.
    Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8(8):603–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Nagarajan N, Custer KL, Bajjalieh S. Regulated secretion. In: Segev N, ed. Trafficking Inside Cells: Pathways, Mechanisms and Regulation. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2009:84–102, this volume.Google Scholar
  28. 28.
    Dikeakos JD, Reudelhuber TL. Sending proteins to dense core secretory granules: still a lot to sort out. J Cell Biol 2007; 177(2):191–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Ross JL, Ali MY, Warshaw DM. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 2008; 20(l):4l–7.Google Scholar
  30. 30.
    Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 2006; 7(12):897–908.CrossRefPubMedGoogle Scholar
  31. 31.
    Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12(5):671–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9(7):543–56.CrossRefPubMedGoogle Scholar
  33. 33.
    van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9(2): 112–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Lemmon MA. Membrane recognition by phospholipid-binding domains Nat Rev Mol Cell Biol 2008; 9(2):99–111.CrossRefPubMedGoogle Scholar
  35. 35.
    Krauss M, Haucke V. Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 2007; 8(3):241–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim Y-G, Raunser S, Munger C et al. The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. 2006; 127(4):817–30.Google Scholar
  37. 37.
    Sacher M, Kim Y-G, Lavie A et al. The TRAPP complex: insights into its architecture and function. Traffic 2008; doi: 10.1111/j.l600-0854.2008.00833.x.Google Scholar
  38. 38.
    Fotin A, Cheng Y, Sliz P et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 2004; 432(7017):573–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Betzig E, Patterson GH, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313(5793):1642–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Manley S, Gillette JM, Patterson GH et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Meth 2008; 5(2): 155–7.CrossRefGoogle Scholar
  41. 41.
    Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci 2007; 120(24):4247–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Pepperkok R, Ellenberg J. High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 2006; 7(9):690–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Sudhof TC. Synaptic vesicles: an organelle comes of age. Cell 2006; 127(4):671–3.CrossRefPubMedGoogle Scholar
  44. 44.
    Takamori S, Holt M, Stenius K et al. Molecular anatomy of a trafficking organelle. 2006; 127(4):831–46.Google Scholar
  45. 45.
    Nicole R. Quenneville EC. Toward the systems biology of vesicle transport. Traffic 2006; 7(7):761–8.CrossRefGoogle Scholar
  46. 46.
    Joyce AR, Palsson BO. The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 2006; 7(3):198–210.CrossRefPubMedGoogle Scholar
  47. 47.
    Megason SG, Fraser SE. Imaging in systems biology. Cell 2007; 130(5):784–95.CrossRefPubMedGoogle Scholar
  48. 48.
    Kiel C, Beltrao P, Serrano L. Analyzing protein interaction networks using structural information. Annu Rev Biochem 2008; 77(1):415–41.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Biological ChemistryDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations