The Golgi Apparatus

  • Zhaolin Hua
  • Todd R. Graham
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Secretion of proteins from eukaryotic cells requires the coordinated function of multiple organelles and cellular machineries. After synthesis and translocation into the endoplasmic reticulum, proteins are exported to the Golgi apparatus, a multi-compartment organelle that is the protein modifying, packaging and distribution center of the secretory pathway. This chapter provides a brief historical account of the discovery of the Golgi apparatus, a description of its unique structure and organization, and its role in glycoprotein biosynthesis, sorting and secretion. The biogenesis of the Golgi through localization of resident proteins and its inheritance during cell division is also described. Emphasis is placed on processes, such as protein transport through the Golgi, that are incompletely understood and remain focal points for current research in this field.


Golgi Apparatus Retrograde Transport Golgi Membrane Endoplasmic Reticu Golgi Cisterna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golgi C. Sur le structure des cellules nerveusesrch. Arch Ital Biol 1898; 30:60–71.Google Scholar
  2. 2.
    Cajal SR. Algunas variaciones fisiologicas y patologicas del aparato reticular de Golgi. Trrab Lab Inv Biol Madr 1914; 12:127–227.Google Scholar
  3. 3.
    Negri A. Di una fina particolarita de struttura delle cellule di alcune ghiandole dei mammiferi. Boll Soc med-chir di Pavia 1900; 13–14:69–71.Google Scholar
  4. 4.
    Bentivoglio M. 1898: The Golgi apparatus emerges from nerve cells. Trends Neurosci 1998; 21(5):195–200.PubMedCrossRefGoogle Scholar
  5. 5.
    Fuchs H. Uber das epithel im nebenhoden der maus. Anat Hefte 1902; 19:313–47.CrossRefGoogle Scholar
  6. 6.
    Nassonov DN. Das Golgische binnennetz und seine beziehungen zu der sekretion: Untersuchungen uber einige Amphibiendrusen. Arch Mikrosk Anat 1923; 97:136–86.CrossRefGoogle Scholar
  7. 7.
    Bowen RH. The cytology of glandular secretion. Quart Rev Biol 1929; 4(299-324):484–519.Google Scholar
  8. 8.
    Baker JR. What is the Golgi controversy? J Roy Micr Soc 1955; 74:217–21.Google Scholar
  9. 9.
    Dalton AJ, Felix MD. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat 1954; 94(2):171–207.PubMedCrossRefGoogle Scholar
  10. 10.
    Dalton AJ, Felix MD. A comparative study of the Golgi complex. J Biophys Biochem Cytol 1956; 2(4, Suppl):79–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Farquhar MG, Rinehart JF. Endocrin 1954; 55:857–76.CrossRefGoogle Scholar
  12. 12.
    Sjostrand FS, Hanzon V. Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res 1954; 7:415–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Beams HW, Kessel RG. The Golgi apparatus: Structure and function. Int Rev Cytol 1968; 23:209–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Berger EG. The Golgi apparatus: From discovery to contemporary studies. In: Roth J, ed. The Golgi Apparatus. Basel, Boston and Berlin: Birkhauser Verlag, 1997:37–62.Google Scholar
  15. 15.
    Farquhar MG, Palade GE. The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. J Cell Biol 1981; 91(3 Pt 2):77s–103s.PubMedCrossRefGoogle Scholar
  16. 16.
    Whaley WG. The Golgi apparatus. Vienna and New York: Springer-Verlag, 1975.Google Scholar
  17. 17.
    Friend DS, Murray MJ. Osmium impregnation of the Golgi apparatus. Am J Anat 1965; 117:135–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Rambourg A, Clermont Y, Hermo L. Three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am J Anat 1979; 154:455–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Dupree P, Sherrier DJ. The plant Golgi apparatus. Biochim Biophys Acta 1998; 1404(1–2):259–70.PubMedGoogle Scholar
  20. 20.
    Balch WE, McCaffery JM, Plutner H et al. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 1994; 76(5):841–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Hauri HP, Schweizer A. The endoplasmic reticulum-Golgi intermediate compartment. Curr Opin Cell Biol 1992; 4(4):600–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Novikoff PM, Novikoff AB, Quintana N et al. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 1971; 50(3):859–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldfischer S, Essner E, Novikoff AB. The localization of phosphatase activities at the level of ultrastructure. J Histochem Cytochem 1964; 12:72–95.PubMedGoogle Scholar
  24. 24.
    Dunphy WG, Rothman JE. Compartmental organization of the Golgi stack. Cell 1985; 42(1): 13–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Griffiths G, Simons K. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 1986; 234(4775):438–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Rambourg A, Clermont Y. Three-dimensional structure of the Golgi apparatus in mammalian cells. In: Roth J, ed. The Golgi apparatus. Basel, Boston and Berlin: Birkhauser Verlag, 1997:1–36.Google Scholar
  27. 27.
    Pearse BM, Robinson MS. Clathrin, adaptors, and sorting. Annu Rev Cell Biol 1990; 6:151–171.PubMedCrossRefGoogle Scholar
  28. 28.
    Rios RM, Bornens M. The Golgi apparatus at the cell centre. Curr Opin Cell Biol 2003; 15(1):60–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Rambourg A, Clermont Y, Marraud A. Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope. Am J Anat 1974; 140(1):27–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Ladinsky MS, Mastronarde DN, Mcintosh JR et al. Golgi structure in three dimensions: Functional insights from the normal rat kidney cell. J Cell Biol 1999; 144(6): 1135–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Marsh BJ, Mastronarde DN, Buttle KF et al. Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 2001; 98(5):2399–406.PubMedCrossRefGoogle Scholar
  32. 32.
    Ladinsky MS, Wu CC, Mcintosh S et al. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 2002; 13(8):2810–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Marsh B, Mastronarde DN, Mcintosh JR et al. Structural evidence for multiple transport mechanisms through the Golgi in the pancreatic beta-cell line, HIT-T15. Biochem Soc Trans 2001; 29(Pt 4):461–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Trucco A, Polishchuk RS, Martella O et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 2004; 6(11): 1071–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Marsh BJ, Volkmann N, Mcintosh JR et al. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 2004; 101(15):5565–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Preuss D, Mulholland J, Franzusoff A et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 1992; 3(7):789–803.PubMedGoogle Scholar
  37. 37.
    Rambourg A, Jackson CL, Clermont Y. Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci 2001; 114(Pt12): 2231–9.PubMedGoogle Scholar
  38. 38.
    Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205–15.PubMedCrossRefGoogle Scholar
  39. 39.
    Brigance WT, Barlowe C, Graham TR. Organization of the yeast Golgi complex into at least four functionally distinct compartments. Mol Biol Cell 2000; 11(1): 171–82.PubMedGoogle Scholar
  40. 40.
    Graham TR, Emr SD. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec 18 (NSF) mutant. J Cell Biol 1991; 114(2):207–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Redding K, Holcomb C, Fuller RS. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J Cell Biol 1991; 113(3):527–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Graham TR, Seeger M, Payne GS et al. Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol 1994; 127(3):667–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Rayner JC, Munro S. Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J Biol Chem 1998; 273(41):26836–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Taylor RS, Wu CC, Hays LG et al. Proteomics of rat liver Golgi complex: Minor proteins are identified through sequential fractionation. Electrophoresis 2000; 21(16):344l–59.CrossRefGoogle Scholar
  45. 45.
    Wu CC, Yates Illrd JR, Neville MC et al. Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic 2000; 1(10):769–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Bell AW, Ward MA, Blackstock WP et al. Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 2001; 276(7):5152–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Varki A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993; 3(2):97–130.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharma A, Okabe J, Birch P et al. Reduction in the level of Gal(alphal,3)Gal in transgenic mice and pigs by the expression of an alpha(l,2)fucosyltransferase. Proc Natl Acad Sci USA 1996; 93(14):7190–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Lai L, Kolber-Simonds D, Park KW et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295(5557): 1089–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001; 291(5512):2364–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Goldberg DE, Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem 1983; 258(5):3159–65.PubMedGoogle Scholar
  52. 52.
    Berninsone PM, Hirschberg CB. Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 2000; 10(5):542–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Dean N. Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1999; 1426(2):309–22.PubMedGoogle Scholar
  54. 54.
    Steiner DF. The proprotein convertases. Curr Opin Chem Biol 1998; 2(1):31–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002; 3(10):753–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Fuller RS, Sterne RE, Thorner J. Enzymes required for yeast prohormone processing. Annu Rev Physiol 1988; 50:345–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown MS, Ye J, Rawson RB et al. Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 2000; 100(4):391–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Medina M, Dotti CG. RIPped out by presenilin-dependent gamma-secretase. Cell Signal 2003; 15(9):829–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Blobel G. Protein targeting (Nobel lecture). Chembiochem 2000; 1(2):86–102.PubMedCrossRefGoogle Scholar
  60. 60.
    Bonifacino JS, Lippincott-Schwartz J. Coat proteins: Shaping membrane transport. Nat Rev Mol Cell Biol 2003; 4(5):409–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Kirchhausen T. Three ways to make a vesicle. Nat Rev Mol Cell Biol 2000; 1(3):187–98.PubMedCrossRefGoogle Scholar
  62. 62.
    Springer S, Spang A, Schekman R. A primer on vesicle budding. Cell 1999; 97(2): 145–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: New twists in the tale. Nat Rev Mol Cell Biol 2003; 4(3):202–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Traub LM, Kornfeld S. The trans-Golgi network: A late secretory sorting station. Curr Opin Cell Biol 1997; 9(4):527–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Folsch H, Pypaert M, Maday S et al. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J Cell Biol 2003; 163(2):351–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Folsch H, Ohno H, Bonifacino JS et al. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99(2):189–98.PubMedCrossRefGoogle Scholar
  67. 67.
    Opat AS, van Vliet C, Gleeson PA. Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 2001; 83(8):763–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Munro S, Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48(5):899–907.PubMedCrossRefGoogle Scholar
  69. 69.
    Redding K, Seeger M, Payne GS et al. The effects of clathrin inactivation on localization of Kex2 protease are independent of the TGN localization signal in the cytosolic tail of Kex2p. Mol Biol Cell 1996; 7(11): 1667–77.PubMedGoogle Scholar
  70. 70.
    Nilsson T, Slusarewicz P, Hoe MH et al. Kin recognition: A model for the retention of Golgi enzymes. FEBS Letters 1993; 330:1–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Weisz OA, Swift AM, Machamer CE. Oligomerization of a membrane protein correlates with its retention in the Golgi complex. J Cell Biol 1993; 122(6):1185–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Nilsson T, Hoe MH, Slusarewicz P et al. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J 1994; (13):562–74.Google Scholar
  73. 73.
    Cole NB, Smith CL, Sciaky N et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 1996; 273(5276):797–801.PubMedCrossRefGoogle Scholar
  74. 74.
    Becker B, Melkonian M. The secretory pathway of protists: Spatial and functional organization and evolution. Microbiol Rev 1996; 60(4):697–721.PubMedGoogle Scholar
  75. 75.
    Bonfanti L, Mironov Jr AA, Martinez-Menarguez JA et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: Evidence for cisternal maturation. Cell 1998; 95(7):993–1003.PubMedCrossRefGoogle Scholar
  76. 76.
    Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 1995; 14(19):4695–704.PubMedGoogle Scholar
  77. 77.
    Bretscher MS, Munro S. Cholesterol and the Golgi apparatus. Science 1993; 261(5126): 1280–1.PubMedCrossRefGoogle Scholar
  78. 78.
    Rolls MM, Marquardt MT, Kielian M et al. Cholesterol-independent targeting of Golgi membrane proteins in insect cells. Mol Biol Cell 1997; 8(11):2111–8.PubMedGoogle Scholar
  79. 79.
    Mitra K, Ubarretxena-Belandia I, Taguchi T et al. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 2004; 101(12):4083–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Graham TR, Krasnov VA. Sorting of yeast alpha 1,3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein. Mol Biol Cell 1995; 6(7):809–24.PubMedGoogle Scholar
  81. 81.
    Harris SL, Waters MG. Localization of a yeast early Golgi mannosyltransferase, Ochlp, involves retrograde transport. Journal of Cell Biology 1996; 132(6):985–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Hoe MH, Slusarewicz P, Misteli T et al. Evidence for recycling of the resident medial/trans Golgi enzyme, N-acetylglucosaminyltransferase I, in ldlD cells. J Biol Chem 1995; 270(42):25057–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Pelham HR. Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr Opin Cell Biol 1995; 7(4):530–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Todorow Z, Spang A, Carmack E et al. Active recycling of yeast Golgi mannosyltransferase complexes through the endoplasmic reticulum. Proc Natl Acad Sci USA 2000; 97(25): 13643–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Martinez-Menarguez JA, Prekeris R, Oorschot VM et al. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 2001; 155(7): 1213–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Love HD, Lin CC, Short CS et al. Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J Cell Biol 1998; 140(3):541–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Lanoix J, Ouwendijk J, Lin CC et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 1999; 18(18):4935–48.PubMedCrossRefGoogle Scholar
  88. 88.
    Wooding S, Pelham HR. The dynamics of golgi protein traffic visualized in living yeast cells. Mol Biol Cell 1998; 9(9):2667–80.PubMedGoogle Scholar
  89. 89.
    Storrie B, White J, Rottger S et al. Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 1998; 143(6):1505–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Cole NB, Ellenberg J, Song J et al. Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol 1998; 140(1):1–15.PubMedCrossRefGoogle Scholar
  91. 91.
    Lippincott-Schwartz J, Yuan L, Tipper C et al. Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 1991; 67(3):601–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Lippincott-Schwartz J, Yuan LC, Bonifacino JS et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER. Cell 1989; 56(5):801–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Grasse PP. Ultrastructure, polarity and reproduction of Golgi apparatus. C R Hebd Seances Acad Sci 1957; 245(16):1278–81.PubMedGoogle Scholar
  94. 94.
    Grimstone AV. Fine structure and morphogenesis in Protozoa. Biol Rev Camb Philos Soc 1961; 36:97–150.PubMedCrossRefGoogle Scholar
  95. 95.
    Mollenhauer HH, Whaley WG. An observation on the functioning of the Golgi apparatus. J Cell Biol 1963; 17:222–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Mollenhauer HH, Morre DJ. Golgi apparatus and plant secretion. Ann Rev Plant Physiol 1966; 17:27–46.CrossRefGoogle Scholar
  97. 97.
    Rothman JE, Miller RL, Urbani LJ. Intercompartmental transport in the Golgi complex is a dissociative process: Facile transfer of membrane protein between two Golgi populations. J Cell Biol 1984; 99(1 Pt 1):260–271.PubMedCrossRefGoogle Scholar
  98. 98.
    Farquhar MG. Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1985; 1:447–88.PubMedCrossRefGoogle Scholar
  99. 99.
    Rothman JE. The golgi apparatus: Two organelles in tandem. Science 1981; 213(4513):1212–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Balch WE, Dunphy WG, Braell WA et al. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 1984; 39(2 Pt 1):405–16.PubMedCrossRefGoogle Scholar
  101. 101.
    Waters MG, Serafini T, Rothman JE. ‘Coatomer’: A cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 1991; 349(6306):248–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Serafini T, Orci L, Amherdt M et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: A novel role for a GTP-binding protein. Cell 1991; 67(2):239–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Malhotra V, Orci L, Glick BS et al. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 1988; 54(2):221–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Weidman PJ, Melancon P, Block MR et al. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol 1989; 108(5): 1589–96.PubMedCrossRefGoogle Scholar
  105. 105.
    Sollner T, Whiteheart SW, Brunner M et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362(64l8):318–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Mollenhauer HH, Morre DJ. Perspectives on Golgi apparatus form and function. J Electron Microsc Tech 1991; 17(1):2–14.PubMedCrossRefGoogle Scholar
  107. 107.
    McFadden GI, Melkonian M. Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). I. Flagellar regeneration. Protoplasma 1986; 130(186-98).Google Scholar
  108. 108.
    Leblond CP. Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin. Anat Rec 1989; 224(2): 123–38.PubMedCrossRefGoogle Scholar
  109. 109.
    Volchuk A, Amherdt M, Ravazzola M et al. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell 2000; 102(3):335–48.PubMedCrossRefGoogle Scholar
  110. 110.
    Allan BB, Balch WE. Protein sorting by directed maturation of Golgi compartments. Science 1999; 285(5424):63–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Glick BS, Malhotra V. The curious status of the Golgi apparatus [comment]. Cell 1998; 95(7):883–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Pelham HR. Getting through the Golgi complex. Trends Cell Biol 1998; 8(1):45–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Letourneur F, Gaynor EC, Hennecke S et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 1994; 79(7):1199–1207.PubMedCrossRefGoogle Scholar
  114. 114.
    Gaynor EC, Emr SD. COPI-independent anterograde transport: Cargo-selective ER to Golgi protein transport in yeast COPI mutants. J Cell Biol 1997; 136(4):789–802.PubMedCrossRefGoogle Scholar
  115. 115.
    Rabouille C, Klumperman J. Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 2005; 6(10):812–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Orci L, Stamnes M, Ravazzola M et al. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 1997; 90(2):335–49.PubMedCrossRefGoogle Scholar
  117. 117.
    Pelham HR, Rothman JE. The debate about transport in the Golgi—two sides of the same coin? Cell 2000; 102(6):713–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Mironov AA, Beznoussenko GV, Nicoziani P et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 2001; 155(7):1225–38.PubMedCrossRefGoogle Scholar
  119. 119.
    Malsam J, Satoh A, Pelletier L et al. Golgin tethers define subpopulations of COPI vesicles. Science 2005; 307(5712):1095–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Graham TR, Emr SD. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a secl8(NSF) mutant. JCB 1991; 114:207–18.CrossRefGoogle Scholar
  121. 121.
    Brigance WT, Barlowe C, Graham TR. Organization of the yeast Golgi complex into at least four functionally distinct compartments. Mol Biol Cell 2000; 11(1):171–82.PubMedGoogle Scholar
  122. 122.
    Sato K, Sato M, Nakano A. Rerlp, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J Cell Biol 2001; 152(5):935–44.PubMedCrossRefGoogle Scholar
  123. 123.
    Gaynor EC, Emr SD. COPI-independent anterograde transport: Cargo-selective ER to Golgi protein transport in yeast COPI mutants. JCB 1997; 136(4):789–802.CrossRefGoogle Scholar
  124. 124.
    Matsuura-Tokita K, Takeuchi M, Ichihara A et al. Live imaging of yeast Golgi cisternal maturation. Nature 2006.Google Scholar
  125. 125.
    Losev E, Reinke CA, Jellen J et al. Golgi maturation visualized in living yeast. Nature 2006.Google Scholar
  126. 126.
    Glick BS, Malhotra V. The curious status of the Golgi apparatus. Cell 1998; 95(7):883–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Shorter J, Warren G. Golgi architecture and inheritance. Annu Rev Cell Dev Biol 2002; 18:379–420.PubMedCrossRefGoogle Scholar
  128. 128.
    Benchimol M, Ribeiro KC, Mariante RM et al. Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus. Eur J Cell Biol 2001; 80(9):593–607.PubMedCrossRefGoogle Scholar
  129. 129.
    Pelletier L, Stern CA, Pypaert M et al. Golgi biogenesis in Toxoplasma gondii. Nature 2002; 418(6897):548–52.PubMedCrossRefGoogle Scholar
  130. 130.
    Colanzi A, Suetterlin C, Malhotra V. Cell-cycle-specific Golgi fragmentation: How and why? Curr Opin Cell Biol 2003; 15(4):462–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Zaal KJ, Smith CL, Polishchuk RS et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999; 99(6):589–601.PubMedCrossRefGoogle Scholar
  132. 132.
    Shima DT, Haldar K, Pepperkok R et al. Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J Cell Biol 1997; 137(6):1211–28.PubMedCrossRefGoogle Scholar
  133. 133.
    Jokitalo E, Cabrera-Poch N, Warren G et al. Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum. J Cell Biol 2001; 154(2):317–30.PubMedCrossRefGoogle Scholar
  134. 134.
    Jesch SA, Linstedt AD. The Golgi and endoplasmic reticulum remain independent during mitosis in HeLa cells. Mol Biol Cell 1998; 9(3):623–35.PubMedGoogle Scholar
  135. 135.
    Seemann J, Pypaert M, Taguchi T et al. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 2002; 295(5556):848–51.PubMedCrossRefGoogle Scholar
  136. 136.
    Sutterlin C, Hsu P, Mallabiabarrena A et al. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 2002; 109(3):359–69.PubMedCrossRefGoogle Scholar
  137. 137.
    Acharya U, Mallabiabarrena A, Acharya JK et al. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 1998; 92(2): 183–92.PubMedCrossRefGoogle Scholar
  138. 138.
    Misteli T, Warren G. COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 1994; 125(2):269–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Misteli T, Warren G. A role for tubular networks and a COP I-independent pathway in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 1995; 130(5):1027–39.PubMedCrossRefGoogle Scholar
  140. 140.
    Lowe M, Rabouille C, Nakamura N et al. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 1998; 94(6):783–93.PubMedCrossRefGoogle Scholar
  141. 141.
    Kano F, Takenaka K, Yamamoto A et al. MEK and Cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts. J Cell Biol 2000; 149(2):357–68.PubMedCrossRefGoogle Scholar
  142. 142.
    Tu L., Tai WCS, Chen L, Banfield DK. Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 2008; 321(5887):404–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Schmitz KR, Liu J, Li S et al. Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 2008; 14(4):523–34.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesVanderbilt UniversityNashvilleUSA

Personalised recommendations