Carrier Motility

  • Marcin J. Wozniak
  • Victoria J. Allan
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Membrane traffic pathways require the transport of material between successive organelles, which in neurons may be more than one meter apart. This traffic involves a varied mix of microtubule- and actin-based motility, driven by dynein, kinesin family members and myosins. In this chapter, we will describe the morphology and movement of me membrane carriers that transport material between organelles and the machinery that drives their motility, concentrating on molecular motor proteins in vertebrate non-neuronal cells. We will also consider the role played by Rab proteins as integrators of trafficking and motility.


Golgi Apparatus Late Endosome Cytoplasmic Dynein Recycling Endosome Carrier Motility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 2006; 7:897–908.PubMedCrossRefGoogle Scholar
  2. 2.
    Wozniak M, Milner R, Allan V. N-terminal kinesins: Many and various. Traffic 2004; 5:400–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Caviston J, Holzbaur E. Microtubule motors at the intesection of trafficking and transport. Trends Cell Biol 2006; 16:530–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Vallee R, Williams J, Varma D et al. Dynein: And ancient motor protein involved in multiple modes of transport. J Neurobiol 2003; 58:189–200.CrossRefGoogle Scholar
  5. 5.
    Liang Y, Yu W, Li Y et al. Nudel functions in membrane traffic mainly through association with Lisl and cytoplasmic dynein. J Cell Biol 2004; 164:557–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Sasaki S, Shionoya A, Ishida M et al. A LISl/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 2000; 28:681–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Tai CY, Dujardin D, Faulkner N et al. Role of dynein, dynactin and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 2002; 156:959–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Schroer T. Dynactin. Ann Rev Cell Dev Biol 2004; 20:759–79.CrossRefGoogle Scholar
  9. 9.
    Holleran E, Ligon L, Tokito M et al. Beta III spectrin binds to the Arpl subunit of dynactin. J Biol Chem 2001; 276:36598–605.PubMedCrossRefGoogle Scholar
  10. 10.
    Muresan V, Stankewich M, Steffen W et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: A role for spectrin and acidic phospholipids. Mol Cell 2001; 7:173–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Papoulas O, Hays T, Sisson J. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 2005; 7:612–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Varma D, Dujardin D, Stehman S et al. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J Cell Biol 2006; 172:655–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Starr D, Williams B, Hays T et al. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998; 142:763–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Haghnia M, Cavalli V, Shah S et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 2007; 18:2081–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bielli A, Thornqvist PO, Hendrick A et al. The small GTPase Rab4A interacts with the central region of cytoplasmic dynein light intermediate chain-1. Biochem Biophys Res Comm 2001; 281:1141–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Tai A, Chuang JZ, Bode C et al. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 1999; 97:877–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Yano H, Lee F, Kong H et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J Neurosci 2001; 21:RC125, 121–7.PubMedGoogle Scholar
  18. 18.
    King S, Schroer T. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol 1999; 2:20–4.Google Scholar
  19. 19.
    Culver-Hanlon T, Lex S, Stephens A et al. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol2006; 8:264–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim H, Ling SC, Rogers G et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J Cell Biol 2007; 176:641–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Malik R, Petrov D, Lex S et al. Building complexity: An in vitro study of cytoplasmic dynein with in vivo implications. Curr Biol 2005; 15:2075–85.CrossRefGoogle Scholar
  22. 22.
    Vaughan P, Miura P, Henderson M et al. A role for regulated binding of pl50Glued to microtubuleplus ends in organelle transport. J Cell Biol 2002; 158:305–19.PubMedCrossRefGoogle Scholar
  23. 23.
    Watson P, Forster R, Palmer K et al. Coupling of ER exit to microtubules through direct interac-tion of COPII with dynactin. Nat Cell Biol 2005; 7:48–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Lenz J, Schuchardt I, Straube A et al. A dynein loading zone for retrograde endosome motility at microtubule plus ends. EMBO J 2006; 25:2275–86.PubMedCrossRefGoogle Scholar
  25. 25.
    Watson P, Stephens D. Microtubule plus-end loading of pl50Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J Cell Sci 2006; 119:2758–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Wickstead B, Gull K. A ‘holistic’ kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 2006; 17:1734–43.PubMedCrossRefGoogle Scholar
  27. 27.
    McCart A, Mahony D, Rothnagel J. Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene. Traffic 2003; 4:576–80.PubMedGoogle Scholar
  28. 28.
    Gyoeva F, Bybikova E, Minin A. An isoform of kinesin light chain specific for the Golgi complex. J Cell Sci 2000; 113:2047–54.PubMedGoogle Scholar
  29. 29.
    Khodjakov A, Lizunova EM, Minin AA et al. A specific light chain of kinesin associates with mitochondria in cultured cells. Mol Biol Cell 1998; 9:333–43.PubMedGoogle Scholar
  30. 30.
    Wozniak M, Allan V. Cargo selection by specific kinesin light chain 1 isoforms. EMBO J 2006; 25:5457–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Blasius T, Cai D, Jih G et al. Two binding partners cooperate to activate the molecular motor kinesin-1. J Cell Biol 2007; 176:11–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Cai D, Hoppe A, Swanson J et al. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 2007; 176:51–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Coy DL, Hancock WO, Wagenbach M et al. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1999; 1:288–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Deacon S, Serpinskaya A, Vaughan P et al. Dynactin is required for bidirectional organelle trans-port. J Cell Biol 2003; 160:297–301.PubMedCrossRefGoogle Scholar
  35. 35.
    Bezrezuk M, Schroer T. Dynactin enhances the processivity of kinesin-2. Traffic 2007; 8:124–9.CrossRefGoogle Scholar
  36. 36.
    Takeda S, Yamazaki H, Seog DH et al. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associated vesicles important for neurite building. J Cell Biol 2000; 148:1255–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Fan J, Beck K. A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis. J Cell Sci 2003; 117:619–29.CrossRefGoogle Scholar
  38. 38.
    Klopfenstein D, Tomishige M, Stuurman N et al. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Uncl04 kinesin motor. Cell 2002; 109:347–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Tomishige M, Klopfenstein DR, Vale RD. Conversion of Uncl04/KIF1A kinesin into a processive motor after dimerization. Science 2002; 297:2263–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Spudich G, Chibalina M, Au JY et al. Myosin VI targeting to clathrincoated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nature Cell Biol 2007; 9:176–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Ridley A. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16:522–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Krendel M, Mooseker M. Myosins: Tails (and heads) of functional diversity. Physiol 2005; 20:239–51.CrossRefGoogle Scholar
  43. 43.
    Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Op Cell Biol 2006; 18:168–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Smythe E, Ayscoug K. Actin regulation in endocytosis. J Cell Sci 2006; 119:4589–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Allan V, Thompson H, McNiven M. Motoring around the Golgi apparatus. Nat Cell Biol 2002; 4:E236–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Duran J, Valderrama F, Castel S et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 2003; 14:445–59.PubMedCrossRefGoogle Scholar
  47. 47.
    Burkhardt J, Echeverri C, Nilsson T et al. Overexpression of the Dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 1997; 139:469–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Vaisberg EA, Grissom PM, Mcintosh JR. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol 1996; 133:831–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Y, Takeda S, Nakata T et al. Role of KIFC3 motor protein in Golgi positioning and integra-tion. J Cell Biol 2002; 158:293–303.PubMedCrossRefGoogle Scholar
  50. 50.
    Allan V. Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro. J Cell Biol 1995; 128:879–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Wedlich-Soldner R, Schulz I, Straube A et al. Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 2002; 13:965–77.PubMedCrossRefGoogle Scholar
  52. 52.
    Tabb JS, Molyneaux BJ, Cohen DL et al. Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci 1998; 111:3221–34.PubMedGoogle Scholar
  53. 53.
    Wollert T, Weiss D, Gerdes HH et al. Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis. J Cell Biol 2002; 159:571–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Warner C, Stewart A, Luzio J et al. Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from SnelPs waltzer mice. EMBO J 2003; 22:569–79.PubMedCrossRefGoogle Scholar
  55. 55.
    Sahlender D, Roberts R, Arden S et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 2005; 169:285–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Stephens DJ, Pepperkok R. Imaging of procollagen transport reveals COPI-dependent cargo sort-ing during ER-to-Golgi transport in mammalian cells. J Cell Sci 2002; 115:1149–60.PubMedGoogle Scholar
  57. 57.
    Mironov A, Mironov AJ, Beznoussenko G et al. ER-to-Golgi carriers arrise through direct en bloc protrusion and multistage maturation of specialised ER exit domains. Dev Cell 2003; 5:583–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Fromme J, Schekman R. COPII-coated vesicles: Flexible enough for large cargo? Curr Op Cell Biol 2005; 17:345–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Stephens D. De novo formation, fusion and fission of mammalian COPII-coated endoplasmic reticulum exit sites. EMBO Rep 2003; 4:210–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Stephens DJ, Lin-Marq N, Pagano A et al. COPI coated ER-to-Golgi transport complexes segregate from COPII at ER exit sites. J Cell Sci 2000; 113:2177–85.PubMedGoogle Scholar
  61. 61.
    Hammond A, Glick B. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 2000; 11:3013–30.PubMedGoogle Scholar
  62. 62.
    Scales S, Pepperkok R, Kreis T. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 1997; 90:1137–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirose H, Arasaki K, Dohmae N et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J 2004; 23:1267–78.PubMedCrossRefGoogle Scholar
  64. 64.
    Presley JF, Cole NB, Schroer TA et al. ER-to-Golgi transport visualized in living cells. Nature 1997; 389:81–5.Google Scholar
  65. 65.
    Saraste J, Goud B. Functional symmetry of endomembranes. Mol Biol Cell 2007; 18:1430–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): In search of its identity and function. J Cell Sci 2006; 119:2173–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Sannerud R, Marie M, Nizak C et al. Rabl defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 2006; 17:1514–26.PubMedCrossRefGoogle Scholar
  68. 68.
    Ben-Takaya H, Miura K, Pepperkok R et al. Live imaging of bidirectional traffic from the ERGIC/. J Cell Sci 2005; 118:357–67.CrossRefGoogle Scholar
  69. 69.
    Klumperman J, Schweizer A, Clausen H et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111:3411–25.PubMedGoogle Scholar
  70. 70.
    Shima D, Scales S, Kreis T et al. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic reticulum-to-Golgi transport complexes. Curr Biol 1999; 9:821–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Simpson J, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 2006; 17:723–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Presley J, Ward T, Pfeifer A et al. Dissection of COPI and Arfl dynamics in vivo and role in Golgi membrane transport. Nature 2002; 417:187–93.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen JL, Fucini R, Lacomis L et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol 2005; 169:383–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Marra P, Salvatore L, Mironov Jr A et al. The biogenesis of the Golgi ribbon: The roles of membrane input from the ER and of GM130. Mol Biol Cell 2007; 18:1595–608.PubMedCrossRefGoogle Scholar
  75. 75.
    Marra P, Maffucci T, Daniele T et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nature Cell Biol 2001; 3:1101–13.PubMedCrossRefGoogle Scholar
  76. 76.
    Stauber T, Simpson J, Pepperkok R et al. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 2006; 16:2245–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Le Bot N, Antony C, White J et al. Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J Cell Biol 1998; 143(6): 1559–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Lippincott-Schwartz J, Yuan LC, Bonifacino JS et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldinA: Evidence for membrane cycling from the Golgi to the ER. Cell 1989; 56:801–13.PubMedCrossRefGoogle Scholar
  79. 79.
    Sciaky N, Presley J, Smith C et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 1997; 139:1137–55.PubMedCrossRefGoogle Scholar
  80. 80.
    Mardones G, Snyder C, Howell K. Cis-Golgi matrix proteins move direcdy to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell 2006; 17:525–38.PubMedCrossRefGoogle Scholar
  81. 81.
    Lippincott-Schwartz J, Cole NB, Marotta A et al. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 1995; 128:293–306.PubMedCrossRefGoogle Scholar
  82. 82.
    Robertson A, Allan V. Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. Mol Biol Cell 2000; 11:941–55.PubMedGoogle Scholar
  83. 83.
    Dorner C, Ciossek T, Muller S et al. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 1998; 273:20267–75.PubMedCrossRefGoogle Scholar
  84. 84.
    Nakajima K, Takei Y, Tanaka Y et al. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport. Mol Cell Biol 2002; 22:866–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Girod A, Storrie B, Simpson J et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biol 1999; 1:423–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Matanis T, Akhmanova A, Wulf P et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 2002; 4:986–92.PubMedCrossRefGoogle Scholar
  87. 87.
    White J, Johannes L, Mallard F et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 1999; 147:743–59.PubMedCrossRefGoogle Scholar
  88. 88.
    Young J, Stauber T, del Nery E et al. Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell 2005; 16:162–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Echard A, Jollivet F, Martinez O et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279:580–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Fontijn R, Goud B, Echard A et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 2001; 21:2944–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Hill E, Clarke M, Barr F. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 2000; 19:5711–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hoogenraad C, Akhmanova A, Howell S et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J 2001; 20:4041–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Short B, Preisinger C, Schaletzky J et al. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 2002; 12:1792–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Welte M. Bidirectional transport along microtubules. Curr Biol 2004; l4:R525–37.CrossRefGoogle Scholar
  95. 95.
    Govindan B, Bowser R, Novick P. The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 1995; 128:1055–68.PubMedCrossRefGoogle Scholar
  96. 96.
    Rodriguez-Boulan E, Miisch A. Protein sorting in the Golgi complex: Shifting paradigms. Biochim Biophys Acta 2005; 1744:455–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Hirschberg K, Miller CM, Ellenberg J et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 1998; 143:1485–503.PubMedCrossRefGoogle Scholar
  98. 98.
    Keller P, Toomre D, Diaz E et al. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol 2001; 3:140–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Polishchuk R, Polishchuk E, Marra P et al. GFP-based correlative light-electron microscopy reveals the saccular-tubular ultrastructure of carriers in transit from the Golgi apparatus to the plasma membrane. J Cell Biol 2000; 148:45–58.PubMedCrossRefGoogle Scholar
  100. 100.
    Toomre D, Keller P, White J et al. Dual-colour visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci 1999; 112:21–33.PubMedGoogle Scholar
  101. 101.
    Wacker I, Kaether C, Kromer A et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 1997; 110:1453–63.PubMedGoogle Scholar
  102. 102.
    Polishchuk E, Di Pentima A, Luini A et al. Mechanism of constitutive export from the Golgi: Bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 2003; 14:4470–85.PubMedCrossRefGoogle Scholar
  103. 103.
    Grigoriev I, Splinter D, Keijzer N et al. Rab6 regulates transport and targeting of exocytic carriers. Dev Cell 2007; 13:305–14.PubMedCrossRefGoogle Scholar
  104. 104.
    Desnos C, Schonn JS, Huet S et al. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 2003; 163:559–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Varadi A, Ainscow E, Allan V et al. Conventional kinesin in regulated exocytosis in b-cells. J Cell Sci 2002; 115:4177–89.PubMedCrossRefGoogle Scholar
  106. 106.
    Varadi A, Tsuboi T, Rutter G. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 b-cells. Mol Biol Cell 2005; 16:2670–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Rudolf R, Kögel T, Kuznetsov S et al. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 2003; 116:1339–48.PubMedCrossRefGoogle Scholar
  108. 108.
    Maxfield F, McGraw T. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5:121–32.PubMedCrossRefGoogle Scholar
  109. 109.
    Nakagawa T, Setou M, Seog D et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 2000; 103(4):569–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Merrifield C, Feldman M, Wan L et al. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 2002; 4:691–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Morris S, Arden S, Roberts R et al. Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 2002; 3:331–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Kouranti I, Sachse M, Arouche N et al. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 2006; 16:1719–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Provance Jr D, Gourley C, Silan C et al. Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl Acad Sci USA 2004; 101:1868–73.PubMedCrossRefGoogle Scholar
  114. 114.
    Yan Q, Sun W, Kujala P et al. CART: An Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Rink J, Ghigo E, Kalidzidis Y et al. Rab conversion as a mechanism of progression from early to late endosomes. Cell 2005; 122:735–49.PubMedCrossRefGoogle Scholar
  116. 116.
    Driskell O, Mironov Jr A, Allan V et al. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 2007; 9:113–20.PubMedCrossRefGoogle Scholar
  117. 117.
    Hehnly H, Sheff D, Stamnes M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 2006; 17:4379–89.PubMedCrossRefGoogle Scholar
  118. 118.
    Hoepfner S, Severin F, Cabezas A et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF1B. Cell 2005; 121:437–50.PubMedCrossRefGoogle Scholar
  119. 119.
    Pal A, Severin F, Lammer B et al. Hunitingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 2006; 172:605–18.PubMedCrossRefGoogle Scholar
  120. 120.
    Salas-Cortes L, Ye F, Tenza D et al. Myosin lb modulates the morphology and the protein transport within multi-vesicular sorting endosomes. J Cell Sci 2005; 118:4823–32.PubMedCrossRefGoogle Scholar
  121. 121.
    Lalli G, Gschmeissner S, Schiavo G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J Cell Sci 2003; 116:4639–50.PubMedCrossRefGoogle Scholar
  122. 122.
    Wedlich-Soldner R, Straube A, Friedrich M et al. A balance of KIFlA-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 2002; 21:2946–57.PubMedCrossRefGoogle Scholar
  123. 123.
    Hafezparast M, Klocke R, Ruhrberg C et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 2003; 300:808–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Bananis E, Murray J, Stockert R et al. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J Cell Sci 2003; 116:2749–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Bananis E, Murray J, Stockert R et al. Microtubule and motor-dependent endocytic vesicle sorting in vitro. J Cell Biol 2000; 151:179–86.PubMedCrossRefGoogle Scholar
  126. 126.
    Barbero P, L B, Pfeffer S. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Matteoni R, Kreis TE. Translocation and clustering of endosomes and lysosomes depeds on microtubules. J Cell Biol 1987; 105:1253–65.PubMedCrossRefGoogle Scholar
  128. 128.
    Valetti C, Wetzel D, Schrader M et al. Role of dynactin in endocytic traffic: Effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 1999; 10:4107–20.PubMedGoogle Scholar
  129. 129.
    Cantalupo G, Alifano P, Roberti V et al. Rab-interacting lysosomal protein (RILP): The Rab7 effector required for transport to lysosomes. EMBO J 2001; 20:683–93.PubMedCrossRefGoogle Scholar
  130. 130.
    Jordens I, Fernandez-Borja M, Marsman M et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 2001; 11:1680–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Johansson M, Rocha N, Zwart W et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-pl50Glued, ORP1L and the receptor bill spectrin. J Cell Biol 2007; 176:459–71.PubMedCrossRefGoogle Scholar
  132. 132.
    Marsman M, Jordens I, Rocha N et al. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment. Biochem Biophys Res Comm 2006; 344:747–56.PubMedCrossRefGoogle Scholar
  133. 133.
    Wang T, Hong W. Interorganellar regulation of lysosome positioning by the Golgi apparatus through Rab34 interaction with Rab-interacting lysosomal protein. Mol Biol Cell 2002; 13:4317–32.PubMedCrossRefGoogle Scholar
  134. 134.
    Brown C, Maier K, Stauber T et al. Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 2005; 6:1114–24.PubMedCrossRefGoogle Scholar
  135. 135.
    Bananis E, Nath S, Gordon K et al. Microtubule-dependent movement of late endocytic vesicles in vitro: Requirements for dynein and kinesin. Mol Biol Cell 2004; 15:3688–97.PubMedCrossRefGoogle Scholar
  136. 136.
    Hollenbeck PJ, Swanson JA. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 1990; 346:864–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Matsushita M, Tanaka S, Nakamura N et al. A novel kinesin-like protein, KIFlBbeta3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells. Traffic Mar 2004; 5(3):140–51.CrossRefGoogle Scholar
  138. 138.
    Santama N, Krijnse-Locker J, Griffiths G et al. KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. EMBO J 1998; 17(20):5855–67.PubMedCrossRefGoogle Scholar
  139. 139.
    van Deurs B, Holm P, Kayser L et al. Delivery to lysosomes in the human carcinoma eel line HEp-2 involves and actin filament-facilitated fusion between mature endosomes and pre-existing lysosomes. Eur J Cell Biol 1995; 66:309–23.PubMedGoogle Scholar
  140. 140.
    Hölttä-Vuori M, Alpy F, Tanhuanpaa K et al. MLN64 is invovled in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 2005; 16:3873–86.PubMedCrossRefGoogle Scholar
  141. 141.
    Soni L, Warren C, Bucci C et al. The unconventional myosin-VIIa associates with lysosomes. Cell Motil Cytoskel 2005; 62:13–26.CrossRefGoogle Scholar
  142. 142.
    Ang A, Taguchi T, Francis S et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 2004; 167:531–43.PubMedCrossRefGoogle Scholar
  143. 143.
    van IJzendoorn S. Recycling endosomes. J Cell Sci 2006; 119:1679–81.PubMedCrossRefGoogle Scholar
  144. 144.
    Lin S, Gundersen G, Maxfield F. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable detyrosinated (Glu) microtubules and kinesin. Mol Biol Cell 2002; 13:96–109.PubMedCrossRefGoogle Scholar
  145. 145.
    Lapierre L, Kumar R, Hales C et al. Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 2001; 12:1843–57.PubMedGoogle Scholar
  146. 146.
    Rodriguez O, Cheney R. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 2002; 115:991–1004.PubMedGoogle Scholar
  147. 147.
    Hales C, Vaerman JP, Goldenring J. Rabll family interacting protein 2 associates with myosin Vb and regulates plasma membrane recycling. J Biol Chem 2002; 277:50415–21.PubMedCrossRefGoogle Scholar
  148. 148.
    Stinchcombe J, Majorovits E, Bossi G et al. Centrosome polarisation delivers secretory granules to the immunological synapse. Nature 2006; 443:462–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Seabra M, Coudrier E. Rab GTPases and myosin motors in organelle motility. Traffic 2004; 5:393–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Karcher R, Roland J, Zappacosta F et al. Cell cycle regulation of myosin-V by calcium/ calmodulin-dependent protein kinase II. Science 2001; 293:1317–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Rogers S, Karcher R, Roland J et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J Cell Biol 1999; 146:1265–75.PubMedCrossRefGoogle Scholar
  152. 152.
    Patki V, Buxton J, Chawla A et al. Insulin action of GLUT4 traffic visualized in single 3T3-L1 adipocytes by using ultra-fast microscopy. Mol Biol Cell 2001; 12:129–41.PubMedGoogle Scholar
  153. 153.
    Imamura T, Huang J, Usui I et al. Insulin-induced GLUT4 translocation involves protein kinase C-l-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 2003; 23:4892–900.PubMedCrossRefGoogle Scholar
  154. 154.
    Semiz S, Park JG, Nicoloro SM et al. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J 2003; 22(10):2387–99.PubMedCrossRefGoogle Scholar
  155. 155.
    Huang J, Imamura T, Olefsky J. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci USA 2001; 98:13084–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Wubbolts R, Fernandez-Borja M, Jordens I et al. Opposing motor activities of dynein and kinesin determine retention and transport of MHC class II-containing compartments. J Cell Sci 1999; 112:785–95.PubMedGoogle Scholar
  157. 157.
    Reilen A, Serpinskaya A, Karcher R et al. Differential regulation of dynein-driven melanosome movement. Biochem Biophys Res Comm 2003; 309:652–8.CrossRefGoogle Scholar
  158. 158.
    Levi V, Serpinskaya A, Gratton E et al. Organelle transport along microtubulesin Xenopus melanophores: Evidence for cooperation between multiple motors. Biophys J 2006; 90:318–27.PubMedCrossRefGoogle Scholar
  159. 159.
    Gross S, Tuma M, Deacon S et al. Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 2002; 156:855–65.PubMedCrossRefGoogle Scholar
  160. 160.
    Kural C, Kim H, Syed S et al. Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 2005; 308:1469–72.PubMedCrossRefGoogle Scholar
  161. 161.
    Ligon L, Tokito M, Finkelstein J et al. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J Biol Chem 2004; 279:19201–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Ali M, Krementsova E, Kennedy G et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 2007; 104:4332–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu X, Tsan G, Hammer Illrd J. Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 2005; 171:201–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Holleran E, Ligon L, Tokito M et al. bill spectrin binds to the Arpl subunit of dynactin. J Biol Chem 2001; 276:36598–605.PubMedCrossRefGoogle Scholar
  165. 165.
    Toyoshima I, Yu H, Steuer ER et al. Kinectin, a major kinesin-binding protein on ER. J Cell Biol 1992; 118:1121–31.PubMedCrossRefGoogle Scholar
  166. 166.
    Susalka S, Hancock W, Pfister K. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochim Biophys Acta 2000; 1496:76–88.PubMedCrossRefGoogle Scholar
  167. 167.
    Pfister K, Fisher E, Gibbons I et al. Cytoplasmic dynein nomenclature. J Cell Biol 2005; 171:411–3.PubMedCrossRefGoogle Scholar
  168. 168.
    Miki H, Setou M, Kaneshiro K et al. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 2001; 98:7004–11.PubMedCrossRefGoogle Scholar
  169. 169.
    Vale R. The molecular motor toolbox for intracellular transport. Cell 2003; 112:467–80.PubMedCrossRefGoogle Scholar
  170. 170.
    Marszalek J, Goldstein L. Understanding the functions of kinesin II. Biochim Biophys Acta 2000; 1496:142–50.PubMedCrossRefGoogle Scholar
  171. 171.
    Gupta V, Palmer KJ, Spence P et al. Kinesin-1 (uKHC/KIF5B) is required for bidirectional motility of ER exit sites and efficient ER-to-Golgi transport. Traffic 2008; 9:1850–66.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.The Bristol Institute for Transfusion SciencesNational Health Service Blood and TransplantFilton, BristolUK
  2. 2.Department of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations