Advertisement

Overview of Cancer Detection and Monitoring Strategies

  • Kurt R. Zinn
Chapter

Abstract

There is tremendous potential for patients to benefit from recent advances in optical technologies and molecular imaging approaches. While these clinical applications are just beginning, the data from preclinical studies indicate significant improvements in early detection of cancerous growth and metastasis by various optical-based techniques.

Keywords

Positron Emission Tomography Green Fluorescent Protein Single Photon Emission Compute Tomography Diffuse Optical Tomography Oral Cancer Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe, H., J. Wang, K. Furukawa, K. Oki, M. Uda, S. Tsuneda, and Y. Ito, A reduction-triggered fluorescence probe for sensing nucleic acids. Bioconjug Chem, 2008. 19(6): 1219–26.CrossRefPubMedGoogle Scholar
  2. Adusumilli, P.S., B.M. Stiles, M.K. Chan, D.P. Eisenberg, Z. Yu, S.F. Stanziale, R. Huq, R.J. Wong, V.W. Rusch, and Y. Fong, Real-time diagnostic imaging of tumors and metastases by use of a replication-competent herpes vector to facilitate minimally invasive oncological surgery. Faseb J, 2006. 20(6): 726–8.PubMedGoogle Scholar
  3. Bading, J.R. and A.F. Shields, Imaging of cell proliferation: status and prospects. J Nucl Med, 2008. 49 Suppl 2: 64S–80S.CrossRefPubMedGoogle Scholar
  4. Ballou, B., G.W. Fisher, J.S. Deng, T.R. Hakala, M. Srivastava, and D.L. Farkas, Cyanine fluorochrome-labeled antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5, and Cy7. Cancer Detect Prev, 1998. 22(3): 251–7.CrossRefPubMedGoogle Scholar
  5. Ballou, B., G.W. Fisher, T.R. Hakala, and D.L. Farkas, Tumor detection and visualization using cyanine fluorochrome-labeled antibodies. Biotechnol Prog, 1997. 13(5): 649–58.CrossRefPubMedGoogle Scholar
  6. Becker, A., C. Hessenius, S. Bhargava, C. Grotzinger, K. Licha, J. Schneider-Mergener, B. Wiedenmann, and W. Semmler, Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors. Ann N Y Acad Sci, 2000. 921: 275–8.CrossRefPubMedGoogle Scholar
  7. Becker, A., C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol, 2001. 19(4): 327–31.CrossRefPubMedGoogle Scholar
  8. Bennett, J., D. Duan, J.F. Engelhardt, and A.M. Maguire, Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction. Invest Ophthalmol Vis Sci, 1997. 38(13): 2857–63.PubMedGoogle Scholar
  9. Cai, W. and X. Chen, Multimodality molecular imaging of tumor angiogenesis. J Nucl Med, 2008. 49 Suppl 2: 113S–28S.CrossRefPubMedGoogle Scholar
  10. Chaudhuri, T.R., Z. Cao, V.N. Krasnykh, A.V. Stargel, N. Belousova, E.E. Partridge, and K.R. Zinn, Blood-based screening and light based imaging for the early detection and monitoring of ovarian cancer xenografts. Technol Cancer Res Treat, 2003. 2(2): 171–80.PubMedGoogle Scholar
  11. Chaudhuri, T.R., Z. Cao, B.E. Rogers, E.E. Partridge, and K.R. Zinn, Non-invasive light-based imaging of GFP-positive ovarian xenografts. Abstract Book p. 70, Annual Investigators' Workshop, 2001a.Google Scholar
  12. Chaudhuri, T.R., Z. Cao, E.E. Partridge, and K.R. Zinn, A comparative analysis of optical and gamma camera imaging for non-invasive detection of ovarian cancer. Eur J Nucl Med Mol I, 2002. 29(1):s229.Google Scholar
  13. Chaudhuri, T.R., J.M. Mountz, B.E. Rogers, E.E. Partridge, and K.R. Zinn, Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy. Gynecol Oncol, 2001b. 82(3): 581–9.CrossRefPubMedGoogle Scholar
  14. Chenevert, T.L., L.D. Stegman, J.M. Taylor, P.L. Robertson, H.S. Greenberg, A. Rehemtulla, and B.D. Ross, Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst, 2000. 92(24): 2029–36.CrossRefPubMedGoogle Scholar
  15. Chirmule, N., S.E. Raper, L. Burkly, D. Thomas, J. Tazelaar, J.V. Hughes, and J.M. Wilson, Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40-CD40 ligand interactions. J Virol, 2000. 74(7): 3345–52.CrossRefPubMedGoogle Scholar
  16. Chishima, T., Y. Miyagi, L. Li, Y. Tan, E. Baranov, M. Yang, H. Shimada, A.R. Moossa, and R.M. Hoffman, Use of histoculture and green fluorescent protein to visualize tumor cell host interaction. In Vitro Cell Dev Biol Anim, 1997a. 33(10): 745–7.CrossRefPubMedGoogle Scholar
  17. Chishima, T., Y. Miyagi, X. Wang, Y. Tan, H. Shimada, A. Moossa, and R.M. Hoffman, Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res, 1997b. 17(4A): 2377–84.PubMedGoogle Scholar
  18. Chishima, T., Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A.R. Moossa, and R.M. Hoffman, Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res, 1997c. 57(10): 2042–7.PubMedGoogle Scholar
  19. Chishima, T., M. Yang, Y. Miyagi, L. Li, Y. Tan, E. Baranov, H. Shimada, A.R. Moossa, S. Penman, and R.M. Hoffman, Governing step of metastasis visualized in vitro. Proc Natl Acad Sci USA, 1997d. 94(21): 11573–6.CrossRefPubMedGoogle Scholar
  20. Dardalhon, V., N. Noraz, K. Pollok, C. Rebouissou, M. Boyer, A.Q. Bakker, H. Spits, and N. Taylor, Green fluorescent protein as a selectable marker of fibronectin- facilitated retroviral gene transfer in primary human T lymphocytes. Hum Gene Ther, 1999. 10(1): 5–14.CrossRefPubMedGoogle Scholar
  21. Eisenberg, D.P., P.S. Adusumilli, K.J. Hendershott, S. Chung, Z. Yu, M.K. Chan, M. Hezel, R.J. Wong, and Y. Fong, Real-time intraoperative detection of breast cancer axillary lymph node metastases using a green fluorescent protein-expressing herpes virus. Ann Surg, 2006. 243(6): 824–30; discussion 830–2.CrossRefPubMedGoogle Scholar
  22. Fingleton, B., R. Menon, K.J. Carter, P.D. Overstreet, D.L. Hachey, L.M. Matrisian, and J.O. McIntyre, Proteinase activity in human and murine saliva as a biomarker for proteinase inhibitor efficacy. Clin Cancer Res, 2004. 10(23): 7865–74.CrossRefPubMedGoogle Scholar
  23. Galons, J.P., M.I. Altbach, G.D. Paine-Murrieta, C.W. Taylor, and R.J. Gillies, Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia, 1999. 1(2): 113–7.CrossRefPubMedGoogle Scholar
  24. Gee, M.S., R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology, 2008. 248(3): 925–35.Google Scholar
  25. Gleysteen, J.P., J.R. Newman, D. Chhieng, A. Frost, K.R. Zinn, and E.L. Rosenthal, Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck, 2008. 30(6): 782–9.CrossRefPubMedGoogle Scholar
  26. Grab, D., F. Flock, I. Stohr, K. Nussle, A. Rieber, S. Fenchel, H.J. Brambs, S.N. Reske, and R. Kreienberg, Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol, 2000. 77(3): 454–9.CrossRefPubMedGoogle Scholar
  27. Gurfinkel, M., A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem Photobiol, 2000. 72(1): 94–102.CrossRefPubMedGoogle Scholar
  28. Hoffman, R.M., The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer, 2005. 5(10): 796–806.CrossRefPubMedGoogle Scholar
  29. Hoffman, J.M., S.S. Gambhir, and G.J. Kelloff, Regulatory and reimbursement challenges for molecular imaging. Radiology, 2007. 245(3): 645–60.CrossRefPubMedGoogle Scholar
  30. Joshi, A., W. Bangerth, K. Hwang, J.C. Rasmussen, and E.M. Sevick-Muraca, Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection. Med Phys, 2006. 33(5): 1299–310.CrossRefPubMedGoogle Scholar
  31. Kozloff, K.M., L. Quinti, C. Tung, R. Weissleder, and U. Mahmood, Non-invasive imaging of osteoclast activity via near-infrared cathepsin-K activatable optical probe. J Musculoskelet Neuronal Interact, 2006. 6(4): 353.PubMedGoogle Scholar
  32. Kubik-Huch, R.A., W. Dorffler, G.K. von Schulthess, B. Marincek, O.R. Kochli, B. Seifert, U. Haller, and H.C. Steinert, Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol, 2000. 10(5): 761–7.CrossRefPubMedGoogle Scholar
  33. Kurjak, A., S. Kupesic, V. Sparac, and D. Kosuta, Three-dimensional ultrasonographic and power Doppler characterization of ovarian lesions. Ultrasound Obstet Gynecol, 2000. 16(4): 365–71.CrossRefPubMedGoogle Scholar
  34. Le, L.P., J. Li, V.V. Ternovoi, G.P. Siegal, and D.T. Curiel, Fluorescently tagged canine adenovirus via modification with protein IX-enhanced green fluorescent protein. J Gen Virol, 2005. 86(Pt 12): p. 3201–8.CrossRefPubMedGoogle Scholar
  35. Li, C., T.R. Greenwood, and K. Glunde, Glucosamine-bound near-infrared fluorescent probes with lysosomal specificity for breast tumor imaging. Neoplasia, 2008. 10(4): 389–98.PubMedGoogle Scholar
  36. Li, C.Y., S. Shan, Q. Huang, R.D. Braun, J. Lanzen, K. Hu, P. Lin, and M.W. Dewhirst, Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst, 2000. 92(2): 143–7.CrossRefPubMedGoogle Scholar
  37. Licha, K., C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, Synthesis, characterization, and biological properties of cyanine- labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug Chem, 2001. 12(1): 44–50.CrossRefPubMedGoogle Scholar
  38. Lisy, M.R., A. Goermar, C. Thomas, J. Pauli, U. Resch-Genger, W.A. Kaiser, and I. Hilger, In vivo near-infrared fluorescence imaging of carcinoembryonic antigen-expressing tumor cells in mice. Radiology, 2008. 247(3): 779–87.CrossRefPubMedGoogle Scholar
  39. Liu, G., H.S. Rugo, G. Wilding, T.M. McShane, J.L. Evelhoch, C. Ng, E. Jackson, F. Kelcz, B.M. Yeh, F.T. Lee, Jr., C. Charnsangavej, J.W. Park, E.A. Ashton, H.M. Steinfeldt, Y.K. Pithavala, S.D. Reich, and R.S. Herbst, Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol, 2005. 23(24): 5464–73.CrossRefPubMedGoogle Scholar
  40. Mahmood, U., C.H. Tung, A. Bogdanov, Jr., and R. Weissleder, Near-infrared optical imaging of protease activity for tumor detection. Radiology, 1999. 213(3): 866–70.PubMedGoogle Scholar
  41. Mahmood, U. and R. Weissleder, Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther, 2003. 2(5): 489–96.PubMedGoogle Scholar
  42. Mankoff, D.A., J.M. Link, H.M. Linden, L. Sundararajan, and K.A. Krohn, Tumor receptor imaging. J Nucl Med, 2008. 49 Suppl 2: 149S–63S.CrossRefPubMedGoogle Scholar
  43. Martin, B.R., B.N. Giepmans, S.R. Adams, and R.Y. Tsien, Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol, 2005. 23(10): 1308–14.CrossRefPubMedGoogle Scholar
  44. McIntyre, J.O., B. Fingleton, K.S. Wells, D.W. Piston, C.C. Lynch, S. Gautam, and L.M. Matrisian, Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J, 2004. 377(Pt 3): 617–28.PubMedGoogle Scholar
  45. McIntyre, J.O. and L.M. Matrisian, Molecular imaging of proteolytic activity in cancer. J Cell Biochem, 2003. 90(6): 1087–97.CrossRefPubMedGoogle Scholar
  46. Ntziachristos, V., A.G. Yodh, M. Schnall, and B. Chance, Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A, 2000. 97(6): 2767–72.CrossRefPubMedGoogle Scholar
  47. Nunn, A.D., The cost of developing imaging agents for routine clinical use. Invest Radiol, 2006. 41(3): 206–12.CrossRefPubMedGoogle Scholar
  48. Nunn, A.D., The cost of bringing a radiopharmaceutical to the patient's bedside. J Nucl Med, 2007. 48(2): 169.PubMedGoogle Scholar
  49. Peng, L., R. Liu, M. Andrei, W. Xiao, and K.S. Lam, In vivo optical imaging of human lymphoma xenograft using a library-derived peptidomimetic against alpha4beta1 integrin. Mol Cancer Ther, 2008. 7(2): 432–7.CrossRefPubMedGoogle Scholar
  50. Pfeifer, A., T. Kessler, M. Yang, E. Baranov, N. Kootstra, D.A. Cheresh, R.M. Hoffman, and I.M. Verma, Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther, 2001. 3(3): 319–22.CrossRefPubMedGoogle Scholar
  51. Pickles, M.D., P. Gibbs, M. Lowry, and L.W. Turnbull, Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging, 2006. 24(7): 843–7.CrossRefPubMedGoogle Scholar
  52. Plathow, C. and W.A. Weber, Tumor cell metabolism imaging. J Nucl Med, 2008. 49 Suppl 2: 43S–63S.CrossRefPubMedGoogle Scholar
  53. Ramjiawan, B., P. Maiti, A. Aftanas, H. Kaplan, D. Fast, H.H. Mantsch, and M. Jackson, Noninvasive localization of tumors by immunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancer specificity. Cancer, 2000. 89(5): 1134–44.CrossRefPubMedGoogle Scholar
  54. Reynolds, J.S., T.L. Troy, R.H. Mayer, A.B. Thompson, D.J. Waters, K.K. Cornell, P.W. Snyder, and E.M. Sevick-Muraca, Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol, 1999. 70(1): 87–94.CrossRefPubMedGoogle Scholar
  55. Rocconi, R.P., Z.B. Zhu, M. Stoff-Khalili, A.A. Rivera, B. Lu, M. Wang, R.D. Alvarez, D.T. Curiel, and S.K. Makhija, Treatment of ovarian cancer with a novel dual targeted conditionally replicative adenovirus (CRAd). Gynecol Oncol, 2007. 105(1): 113–21.Google Scholar
  56. Rosenthal, E.L., B.D. Kulbersh, T. King, T.R. Chaudhuri, and K.R. Zinn, Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther, 2007. 6(4): 1230–8.CrossRefPubMedGoogle Scholar
  57. Scherer, R.L., J.O. McIntyre, and L.M. Matrisian, Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev, 2008. 27(4): 679–90.Google Scholar
  58. Sevick-Muraca, E.M., R. Sharma, J.C. Rasmussen, M.V. Marshall, J.A. Wendt, H.Q. Pham, E. Bonefas, J.P. Houston, L. Sampath, K.E. Adams, D.K. Blanchard, R.E. Fisher, S.B. Chiang, R. Elledge, and M.E. Mawad, Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology, 2008. 246(3): 734–41.CrossRefPubMedGoogle Scholar
  59. Shaner, N.C., M.Z. Lin, M.R. McKeown, P.A. Steinbach, K.L. Hazelwood, M.W. Davidson, and R.Y. Tsien, Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods, 2008. 5(6): 545–51.CrossRefPubMedGoogle Scholar
  60. Shaner, N.C., P.A. Steinbach, and R.Y. Tsien, A guide to choosing fluorescent proteins. Nat Methods, 2005. 2(12): 905–9.CrossRefPubMedGoogle Scholar
  61. Shcherbo, D., E.M. Merzlyak, T.V. Chepurnykh, A.F. Fradkov, G.V. Ermakova, E.A. Solovieva, K.A. Lukyanov, E.A. Bogdanova, A.G. Zaraisky, S. Lukyanov, and D.M. Chudakov, Bright far-red fluorescent protein for whole-body imaging. Nat Methods, 2007. 4(9): 741–6.CrossRefPubMedGoogle Scholar
  62. Shibata, A., K. Furukawa, H. Abe, S. Tsuneda, and Y. Ito, Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett, 2008. 18(7): 2246–9.CrossRefPubMedGoogle Scholar
  63. Stoff-Khalili, M.A., A.A. Rivera, J.M. Mathis, N.S. Banerjee, A.S. Moon, A. Hess, R.P. Rocconi, T.M. Numnum, M. Everts, L.T. Chow, J.T. Douglas, G.P. Siegal, Z.B. Zhu, H.G. Bender, P. Dall, A. Stoff, L. Pereboeva, and D.T. Curiel, Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat, 2007. 105(2): 157–67.CrossRefPubMedGoogle Scholar
  64. Stoff-Khalili, M.A., A.A. Rivera, A. Nedeljkovic-Kurepa, A. DeBenedetti, X.L. Li, Y. Odaka, J. Podduturi, D.A. Sibley, G.P. Siegal, A. Stoff, S. Young, Z.B. Zhu, D.T. Curiel, and J.M. Mathis, Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control. Breast Cancer Res Treat, 2008. 108(1): 43–55.CrossRefPubMedGoogle Scholar
  65. Stummer, W., U. Pichlmeier, T. Meinel, O.D. Wiestler, F. Zanella, and H.J. Reulen, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol, 2006. 7(5): 392–401.CrossRefPubMedGoogle Scholar
  66. Su, M.Y., H.M. Baik, H.J. Yu, J.H. Chen, R.S. Mehta, and O. Nalcioglu, Comparison of choline and pharmacokinetic parameters in breast cancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. Technol Cancer Res Treat, 2006. 5(4): 401–10.PubMedGoogle Scholar
  67. Takayama, K., P.N. Reynolds, Y. Adachi, L. Kaliberova, J. Uchino, Y. Nakanishi, and D.T. Curiel, Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application. Cancer Gene Ther, 2007. 14(1): 105–16.CrossRefPubMedGoogle Scholar
  68. Tempany, C.M., K.H. Zou, S.G. Silverman, D.L. Brown, A.B. Kurtz, and B.J. McNeil, Staging of advanced ovarian cancer: comparison of imaging modalities– report from the Radiological Diagnostic Oncology Group. Radiology, 2000. 215(3): 761–7.PubMedGoogle Scholar
  69. Wahl, R.L., Overview of the current status of PET in breast cancer imaging. Q J Nucl Med, 1998. 42(1): 1–7.PubMedGoogle Scholar
  70. Weissleder, R., C.H. Tung, U. Mahmood, and A. Bogdanov, Jr., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol, 1999. 17(4): 375–8.CrossRefPubMedGoogle Scholar
  71. Wester, H.J., Nuclear imaging probes: from bench to bedside. Clin Cancer Res, 2007. 13(12): 3470–81.CrossRefPubMedGoogle Scholar
  72. Wilmes, L.J., M.G. Pallavicini, L.M. Fleming, J. Gibbs, D. Wang, K.L. Li, S.C. Partridge, R.G. Henry, D.R. Shalinsky, D. Hu-Lowe, J.W. Park, T.M. McShane, Y. Lu, R.C. Brasch, and N.M. Hylton, AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging, 2007. 25(3): 319–27.CrossRefPubMedGoogle Scholar
  73. Withrow, K.P., J.P. Gleysteen, A. Safavy, J. Skipper, R.A. Desmond, K. Zinn, and E.L. Rosenthal, Assessment of indocyanine green-labeled cetuximab to detect xenografted head and neck cancer cell lines. Otolaryngol Head Neck Surg, 2007. 137(5): 729–34.CrossRefPubMedGoogle Scholar
  74. Withrow, K.P., J.R. Newman, J.B. Skipper, J.P. Gleysteen, J.S. Magnuson, K. Zinn, and E.L. Rosenthal, Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat, 2008. 7(1): 61–6.PubMedGoogle Scholar
  75. Yang, M., E. Baranov, P. Jiang, F.X. Sun, X.M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, T. Chishima, H. Shimada, A.R. Moossa, S. Penman, and R.M. Hoffman, Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA, 2000a. 97(3): 1206–11.CrossRefPubMedGoogle Scholar
  76. Yang, M., E. Baranov, A.R. Moossa, S. Penman, and R.M. Hoffman, Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA, 2000. 97(22): 12278–82.CrossRefPubMedGoogle Scholar
  77. Yang, M., S. Hasegawa, P. Jiang, X. Wang, Y. Tan, T. Chishima, H. Shimada, A.R. Moossa, and R.M. Hoffman, Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res, 1998. 58(19): 4217–21.PubMedGoogle Scholar
  78. Yang, M., P. Jiang, Z. An, E. Baranov, L. Li, S. Hasegawa, M. Al-Tuwaijri, T. Chishima, H. Shimada, A.R. Moossa, and R.M. Hoffman, Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res, 1999. 5(11): 3549–59.PubMedGoogle Scholar
  79. Yankeelov, T.E., M. Lepage, A. Chakravarthy, E.E. Broome, K.J. Niermann, M.C. Kelley, I. Meszoely, I.A. Mayer, C.R. Herman, K. McManus, R.R. Price, and J.C. Gore, Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging, 2007. 25(1): 1–13.CrossRefPubMedGoogle Scholar
  80. Yee, D.J., V. Balsanek, and D. Sames, New tools for molecular imaging of redox metabolism: development of a fluorogenic probe for 3 alpha-hydroxysteroid dehydrogenases. J Am Chem Soc, 2004. 126(8): 2282–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kurt R. Zinn
    • 1
  1. 1.Department of RadiologyBirminghamUSA

Personalised recommendations