Advertisement

Optical Imaging of Cancer: Neuro-oncologic Applications

  • Stephen Yip
  • Khalid Shah
Chapter

Abstract

Tumors of the central nervous system (CNS) present unique challenges to the clinician with respect to diagnosis and therapeutics. Location of the tumors within the brain confined by the calvaria and the complex boney architecture of the skull base also present difficulty in efficiently imaging lesions especially in computer tomographic (CT) imaging of lesions in the posterior fossa. The most common central nervous system (CNS) tumors are metastatic lesions that arise from tumors elsewhere in the body, of which lung and breast primaries constitute a large proportion. Primary brain tumors, those that arise from cellular constituents residing within the brain such as glial cells and neurons, are particularly vexing in both diagnosis and treatment improvements in imaging technology with the combined use of neurophysiological monitoring have lead to more aggressive surgical resections of tumors.

Keywords

Glioma Cell Neural Stem Cell Primary Brain Tumor Molecular Beacon Computer Tomographic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12846–51.CrossRefPubMedGoogle Scholar
  2. Arwert E, Hingtgen S, Figueiredo JL, Bergquist H, Mahmood U, Weissleder R, et al. Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res. 2007 Aug 1;67(15):7335–42.CrossRefPubMedGoogle Scholar
  3. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, et al. Epidermal growth factor receptor and Ink4a/Arf: governing terminal differentiation and transformation stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269–77.CrossRefPubMedGoogle Scholar
  4. Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med. 2007 Jun;39(5):386–93.CrossRefPubMedGoogle Scholar
  5. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, et al. Gene therapy of experimental brain tumors using neural progenitor. Nat Med. 2000;6(4):447–50.CrossRefPubMedGoogle Scholar
  6. Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc. 2005 May;218(Pt 2):133–47.CrossRefPubMedGoogle Scholar
  7. Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):377–82.CrossRefPubMedGoogle Scholar
  8. Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008 Feb;8(2):94–107.CrossRefPubMedGoogle Scholar
  9. Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson MD, Jr., et al. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques. 2003 Jun;34(6):1184–8.PubMedGoogle Scholar
  10. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res. 2004 Nov 1;64(21):8009–14.CrossRefPubMedGoogle Scholar
  11. Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, et al. Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg. 2007 Sep;107(3):610–6.CrossRefPubMedGoogle Scholar
  12. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 2002;62(20):5657–63.PubMedGoogle Scholar
  13. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004 Aug;22(8):969–76.CrossRefPubMedGoogle Scholar
  14. Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242–4.CrossRefPubMedGoogle Scholar
  15. Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V, et al. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol. 2006 Nov-Dec;8(6):315–23.CrossRefPubMedGoogle Scholar
  16. Jackson H, Muhammad O, Daneshvar H, Nelms J, Popescu A, Vogelbaum MA, et al. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery. 2007 Mar;60(3):524–9; discussion 9-30.CrossRefPubMedGoogle Scholar
  17. Jacobs AH, Kracht LW, Gossmann A, Ruger MA, Thomas AV, Thiel A, et al. Imaging in neurooncology. NeuroRx. 2005 Apr;2(2):333–47.CrossRefPubMedGoogle Scholar
  18. Kemper EM, Leenders W, Kusters B, Lyons S, Buckle T, Heerschap A, et al. Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. Eur J Cancer. 2006 Dec;42(18):3294–303.CrossRefPubMedGoogle Scholar
  19. Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Targeted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep. 2005 May;5(3):186–97.CrossRefPubMedGoogle Scholar
  20. Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008 Mar;7(3):283–9.CrossRefPubMedGoogle Scholar
  21. Lin WC, Mahadevan-Jansen A, Johnson MD, Weil RJ, Toms SA. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. 2005 Sep;57(3):518–25; discussion-25.CrossRefPubMedGoogle Scholar
  22. Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97–117.CrossRefPubMedGoogle Scholar
  23. Lyons MK, Vora SA. Brain tumors: current issues in diagnosis and management. Semin Neurol. 2007 Sep;27(4):312–24.CrossRefPubMedGoogle Scholar
  24. Madsen S, Hirschberg H. Photodynamic therapy and detection of high-grade gliomas. J Environ Pathol Toxicol Oncol. 2006;25(1–2):453–66.PubMedGoogle Scholar
  25. Mahmood U, Weissleder R. Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther. 2003 May;2(5):489–96.PubMedGoogle Scholar
  26. Majumder SK, Gebhart S, Johnson MD, Thompson R, Lin WC, Mahadevan-Jansen A. A probability-based spectroscopic diagnostic algorithm for simultaneous discrimination of brain tumor and tumor margins from normal brain tissue. Appl Spectrosc. 2007 May;61(5):548–57.CrossRefPubMedGoogle Scholar
  27. Mannino S, Molinari A, Sabatino G, Ciafre SA, Colone M, Maira G, et al. Intratumoral vs systemic administration of meta-tetrahydroxyphenylchlorin for photodynamic therapy of malignant gliomas: assessment of uptake and spatial distribution in C6 rat glioma model. Int J Immunopathol Pharmacol. 2008 Jan–Mar;21(1):227–31.PubMedGoogle Scholar
  28. Messerli SM, Prabhakar S, Tang Y, Shah K, Cortes ML, Murthy V, et al. A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe. Neoplasia. 2004 Mar-Apr;6(2):95–105.CrossRefPubMedGoogle Scholar
  29. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005 Jan 28;307(5709):538–44.CrossRefPubMedGoogle Scholar
  30. Moore GE, Peyton WT, French LA. The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J Neurosurg. 1948;5:392–8.CrossRefPubMedGoogle Scholar
  31. Muhammad O, Popescu A, Toms SA. Macrophage-mediated colocalization of quantum dots in experimental glioma. Methods Mol Biol. 2007;374:161–71.PubMedGoogle Scholar
  32. Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005 Mar;23(3):313–20.CrossRefPubMedGoogle Scholar
  33. Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 2005 Nov;19(13):1839–41.Google Scholar
  34. Okuda T, Kataoka K, Taneda M. Metastatic brain tumor surgery using fluorescein sodium: technical note. Minim Invasive Neurosurg. 2007 Dec;50(6):382–4.CrossRefPubMedGoogle Scholar
  35. Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn. 2006 Nov;6(6):879–90.CrossRefPubMedGoogle Scholar
  36. Price SJ. The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg. 2007 Dec;21(6):562–75.CrossRefPubMedGoogle Scholar
  37. Scherer HJ. The forms of growth in gliomas and their practical significance. Brain. 1940;63:1–35.CrossRefGoogle Scholar
  38. Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol. 2005 Jan;57(1):34–41.CrossRefPubMedGoogle Scholar
  39. Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A, et al. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci. 2008 Apr 23;28(17):4406–13.CrossRefPubMedGoogle Scholar
  40. Shah K, Tang Y, Breakefield X, Weissleder R. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene. 2003 Oct 9;22(44):6865–72.CrossRefPubMedGoogle Scholar
  41. Shah K, Weissleder R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx. 2005 Apr;2(2):215–25.CrossRefPubMedGoogle Scholar
  42. Soling A, Theiss C, Jungmichel S, Rainov NG. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma. Genet Vaccines Ther. 2004 Aug 4;2(1):7.CrossRefPubMedGoogle Scholar
  43. Stefflova K, Chen J, Zheng G. Using molecular beacons for cancer imaging and treatment. Front Biosci. 2007a;12:4709–21.CrossRefPubMedGoogle Scholar
  44. Stefflova K, Chen J, Zheng G. Killer beacons for combined cancer imaging and therapy. Curr Med Chem. 2007b;14(20):2110–25.CrossRefPubMedGoogle Scholar
  45. Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol. 2008 Mar;87(1):103–9.CrossRefPubMedGoogle Scholar
  46. Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma – a review. Part II – clinical studies. J Clin Neurosci. 2006 Aug;13(7):709–17.CrossRefPubMedGoogle Scholar
  47. Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8602–6.CrossRefPubMedGoogle Scholar
  48. Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S, et al. Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery. 2006 Feb;58(2):365–72; discussion -72.CrossRefPubMedGoogle Scholar
  49. Tamura Y, Kuroiwa T, Kajimoto Y, Miki Y, Miyatake S, Tsuji M. Endoscopic identification and biopsy sampling of an intraventricular malignant glioma using a 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging system. Technical note. J Neurosurg. 2007 Mar;106(3):507–10.CrossRefPubMedGoogle Scholar
  50. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther. 2003 Sep 1;14(13):1247–54.CrossRefPubMedGoogle Scholar
  51. Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, et al. Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain Tumor Pathol. 2007;24(2):53–5.CrossRefPubMedGoogle Scholar
  52. Wang G, Cong W, Shen H, Qian X, Henry M, Wang Y. Overview of bioluminescence tomography – a new molecular imaging modality. Front Biosci. 2008;13:1281–93.CrossRefPubMedGoogle Scholar
  53. Wang J, Yong WH, Sun Y, Vernier PT, Koeffler HP, Gundersen MA, et al. Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J Biomed Opt. 2007 Jul–Aug;12(4):044021.CrossRefPubMedGoogle Scholar
  54. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008 Apr 3;452(7187):580–9.CrossRefPubMedGoogle Scholar
  55. Wessels JT, Busse AC, Mahrt J, Dullin C, Grabbe E, Mueller GA. In vivo imaging in experimental preclinical tumor research – a review. Cytometry A. 2007 Aug;71(8):542–9.PubMedGoogle Scholar
  56. Winkeler A, Sena-Esteves M, Paulis LE, Li H, Waerzeggers Y, Ruckriem B, et al. Switching on the lights for gene therapy. PLoS ONE. 2007;2(6):e528.CrossRefPubMedGoogle Scholar
  57. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc. 2007;2(5):1152–65.CrossRefPubMedGoogle Scholar
  58. Yip S, Sabetrasekh R, Sidman RL, Snyder EY. Neural stem cells as novel cancer therapeutic vehicles. Eur J Cancer. 2006 May 11.CrossRefGoogle Scholar
  59. Zacharakis G, Kambara H, Shih H, Ripoll J, Grimm J, Saeki Y, et al. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18252–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Molecular Neurotherapy and Imaging LaboratoryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations