Advertisement

Optical Coherence Tomography for Cancer Detection

  • Steven G. Adie
  • Stephen A. Boppart
Chapter

Abstract

Optical coherence tomography (OCT) is an emerging high-resolution medical and biological imaging technology that is currently making the transition from the research lab into clinical practice. OCT is analogous to ultrasound B-mode imaging except that reflections of light are detected rather than sound. This technique is attractive for medical imaging because it permits real-time in situ imaging of tissue microstructure with resolution approaching that of conventional histology, but without the need for excision and histological processing. Although OCT penetration depth is on the order of 1–2 mm (Schmitt 1999), its fiber-optic implementation enables the use of compact endoscopic probes that facilitate internal access within the body, including epithelial layers, where 85% of all cancers originate (Gurjar et al. 2001).

Keywords

Optical Coherence Tomography Retinal Nerve Fiber Layer Invasive Lobular Carcinoma Optical Coherence Tomography Image Optical Coherence Tomography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank all the past and current members of the Biophotonics Imaging Laboratory at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, for their technical contributions and physical efforts toward the development and clinical translation of OCT and related optical biomedical imaging technologies. We also wish to thank all of our colleagues and collaborators that have advanced this field to the state of the art. We thank those that have contributed images and data and apologize to those who could not be represented due to limited publication space. The work from the Biophotonics Imaging Laboratory was supported in part by grants from the National Institutes of Health (Roadmap Initiative/NIBIB R21 EB005321, NIBIB R01 EB005221, NCI R21/R33 CA115536), the National Science Foundation (BES 03-47747, BES 05-19920), Carle Foundation Hospital, and the Grainger Foundation. Additional information can be found at http://biophotonics.illinois.edu.

References

  1. Adie, S. G., T. R. Hillman, and D. D. Sampson. 2007. Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Optics Express 15 (26):18033–18049.PubMedCrossRefGoogle Scholar
  2. Adler, D. C., Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto. 2007. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics 1 (12): 709–716.CrossRefGoogle Scholar
  3. Agrawal, A., S. Huang, A. W. H. Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer. 2006. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. Journal of Biomedical Optics 11 (4):041121.PubMedCrossRefGoogle Scholar
  4. Aguirre, A. D., N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf. 2006. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express 14 (3):1145–1160.PubMedCrossRefGoogle Scholar
  5. Anker, J. N., and R. Kopelman. 2003. Magnetically modulated optical nanoprobes. Applied Physics Letters 82 (7):1102–1104.CrossRefGoogle Scholar
  6. Applegate, B. E., and J. A. Izatt. 2006. Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography. Optics Express 14 (20):9142–9155.PubMedCrossRefGoogle Scholar
  7. Armstrong, J. J., M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood. 2006. Quantitative upper airway imaging with anatomic optical coherence tomography. American Journal of Respiratory and Critical Care Medicine 173 (2):226–233.PubMedCrossRefGoogle Scholar
  8. Barton, J. K., J. B. Hoying, and C. J. Sullivan. 2002. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology 9:S52–S55.PubMedCrossRefGoogle Scholar
  9. Barton, J. K., J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch. 1999. Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images. Dermatology 198 (4):355–361.CrossRefGoogle Scholar
  10. Berg, W. A., L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe. 2004. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233 (3):830–849.PubMedCrossRefGoogle Scholar
  11. Bohringer, H. J., D. Boller, J. Leppert, U. Knopp, E. Lankenau, E. Reusche, G. Huttmann, and A. Giese. 2006. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue. Lasers in Surgery and Medicine 38 (6):588–597.PubMedCrossRefGoogle Scholar
  12. Boppart, S. A., B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto. 1998. In vivo cellular optical coherence tomography imaging. Nature Medicine 4 (7):861–865.PubMedCrossRefGoogle Scholar
  13. Boppart, S. A., B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski. 1997. Forward-imaging instruments for optical coherence tomography. Optics Letters 22 (21): 1618–1620.PubMedCrossRefGoogle Scholar
  14. Boppart, S. A., W. Luo, D. L. Marks, and K. W. Singletary. 2004. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Research and Treatment 84 (2):85–97.PubMedCrossRefGoogle Scholar
  15. Boppart, S. A., A. L. Oldenburg, C. Y. Xu, and D. L. Marks. 2005. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics 10 (4):041208.CrossRefGoogle Scholar
  16. Bouma, B. E., and G. J. Tearney. 2002. Handbook of Optical Coherence Tomography. New York: Marcel Dekker.Google Scholar
  17. Bouma, B. E., G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. D. Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang. 2003. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89 (3):317–320.PubMedCrossRefGoogle Scholar
  18. Brezinski, M. E., and J. G. Fujimoto. 1999. Optical coherence tomography: High-resolution imaging in nontransparent tissue. IEEE Journal of Selected Topics in Quantum Electronics 5 (4): 1185–1192.CrossRefGoogle Scholar
  19. Cang, H., T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li. 2005. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Optics Letters 30 (22): 3048–3050.PubMedCrossRefGoogle Scholar
  20. Cellini, C., S. T. Hollenbeck, P. Christos, D. Martins, J. Carson, S. Kemper, E. LaVigne, E. Chan, and R. Simmons. 2004. Factors associated with residual breast cancer after re-excision for close or positive margins. Annals of Surgical Oncology 11 (10):915–920.PubMedCrossRefGoogle Scholar
  21. Cense, B., H. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer. 2004. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics 9 (1):121–125.PubMedCrossRefGoogle Scholar
  22. Chan, R. C., A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma. 2004. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Optics Express 12 (19):4558–4572.PubMedCrossRefGoogle Scholar
  23. Chang, S. C., G. Buonaccorsi, A. J. MacRobert, and S. G. Bown. 1997. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: An in vivo study comparing oral and intravesical ALA administration. Lasers in Surgery and Medicine 20 (3):254–264.PubMedCrossRefGoogle Scholar
  24. Chen, Y., A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo. 2007. Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39 (7):599–605.PubMedCrossRefGoogle Scholar
  25. Chen, Y., A. D. Aguirre, P. L. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, and J. G. Fujimoto. 2008. Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues. Optics Express 16 (4):2469–2485.PubMedCrossRefGoogle Scholar
  26. Choma, M. A., M. V. Sarunic, C. H. Yang, and J. A. Izatt. 2003. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express 11 (18):2183–2189.PubMedCrossRefGoogle Scholar
  27. Das, B. B., F. Liu, and R. R. Alfano. 1997. Time-resolved fluorescence and photon migration studies in biomedical and model random media. Reports on Progress in Physics 60 (2): 227–292.CrossRefGoogle Scholar
  28. de Boer, J. F., B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma. 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters 28 (21):2067–2069.PubMedCrossRefGoogle Scholar
  29. de Boer, J. F., and T. E. Milner. 2002. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics 7 (3):359–371.PubMedCrossRefGoogle Scholar
  30. de Giorgi, V., M. Stante, D. Massi, L. Mavilia, P. Cappugi, and P. Carli. 2005. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Experimental Dermatology 14 (1):56–59.PubMedCrossRefGoogle Scholar
  31. Drexler, W. 2004. Ultrahigh-resolution optical coherence tomography. Journal of Biomedical Optics 9 (1):47–74.PubMedCrossRefGoogle Scholar
  32. Drezek, R., M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum. 2003. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. Journal of Biomedical Optics 8 (1):7–16.PubMedCrossRefGoogle Scholar
  33. Escobar, P. F., L. Rojas-Espaillat, S. Tisci, C. Enerson, J. Brainard, J. Smith, N. J. Tresser, F. I. Feldchtein, L. B. Rojas, and J. L. Belinson. 2006. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. International Journal of Gynecological Cancer 16 (5):1815–1822.PubMedCrossRefGoogle Scholar
  34. Faber, D. J., E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen. 2005. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Optics Letters 30 (9):1015–1017.PubMedCrossRefGoogle Scholar
  35. Fercher, A. F., W. Drexler, C. K. Hitzenberger, and T. Lasser. 2003. Optical coherence tomography – principles and applications. Reports on Progress in Physics 66 (2):239–303.CrossRefGoogle Scholar
  36. Fisher, B., S. Anderson, J. Bryant, R. G. Margolese, M. Deutsch, E. R. Fisher, J-H. Jeong, and N. Wolmark. 2002. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England Journal of Medicine 347 (16):1233–1241.PubMedCrossRefGoogle Scholar
  37. Frable, W. J. 1983. Fine-needle aspiration biopsy – a review. Human Pathology 14 (1):9–28.PubMedCrossRefGoogle Scholar
  38. Fujimoto, J. G. 2003. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology 21 (11):1361–1367.PubMedCrossRefGoogle Scholar
  39. Gambichler, T., A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stucker, P. Altmeyer, and F. G. Bechara. 2007a. In vivo optical coherence tomography of basal cell carcinoma. Journal of Dermatological Science 45 (3):167–173.PubMedCrossRefGoogle Scholar
  40. Gambichler, T., P. Regeniter, F. G. Bechara, A. Orlikov, R. Vasa, G. Moussa, M. Stucker, P. Altmeyer, and K. Hoffmann. 2007b. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. Journal of the American Academy of Dermatology 57 (4):629–637.PubMedCrossRefGoogle Scholar
  41. Gao, L., K. J. Parker, R. M. Lerner, and S. F. Levinson. 1996. Imaging of the elastic properties of tissue – a review. Ultrasound in Medicine and Biology 22 (8):959–977.PubMedCrossRefGoogle Scholar
  42. Gibbs, P., and L. W. Turnbull. 2003. Textural analysis of contrast-enhanced MR images of the breast. Magnetic Resonance in Medicine 50 (1):92–98.PubMedCrossRefGoogle Scholar
  43. Goldberg, B. D., N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney. 2008. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. Journal of Biomedical Optics 13 (1):014014.PubMedCrossRefGoogle Scholar
  44. Gossage, K. W., T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton. 2003. Texture, analysis of optical coherence tomography images: feasibility for tissue classification. Journal of Biomedical Optics 8 (3):570–575.PubMedCrossRefGoogle Scholar
  45. Graf, R. N., and A. Wax. 2007. Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography. Journal of the Optical Society of America A-Optics Image Science and Vision 24 (8):2186–2195.CrossRefGoogle Scholar
  46. Greenleaf, J. F., M. Fatemi, and M. Insana. 2003. Selected methods for imaging elastic properties of biological tissues. Annual Review of Biomedical Engineering 5:57–78.PubMedCrossRefGoogle Scholar
  47. Grossman, H. B., L. Gomella, Y. Fradet, A. Morales, J. Presti, C. Ritenour, U. Nseyo, M. J. Droller, and Pc B30201 Study Grp. 2007. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. Journal of Urology 178 (1):62–67.PubMedCrossRefGoogle Scholar
  48. Gurjar, R. S., V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld. 2001. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nature Medicine 7 (11):1245–1248.PubMedCrossRefGoogle Scholar
  49. Hariri, L. P., A. R. Tomlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton. 2007. Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract. Comparative Medicine 57 (2):175–185.PubMedGoogle Scholar
  50. Hariri, L. P., A. R. Tumlinson, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton. 2006. Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model. Lasers in Surgery and Medicine 38 (4):305–313.PubMedCrossRefGoogle Scholar
  51. Hsiung, P. L., L. Pantanowitz, A. D. Aguirre, Y. Chen, D. Phatak, T. H. Ko, S. Bourquin, S. J. Schnitt, S. Raza, J. L. Connolly, H. Mashimo, and J. G. Fujimoto. 2005. Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines. Gastrointestinal Endoscopy 62 (4):561–574.PubMedCrossRefGoogle Scholar
  52. Hsiung, P. L., D. R. Phatak, Y. Chen, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly. 2007. Benign and malignant lesion in the human breast depicted with ultrahigh resolution and dimensional optical coherence tomography. Radiology 244 (3):865–874.PubMedCrossRefGoogle Scholar
  53. Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. 1991. Optical Coherence Tomography. Science 254 (5035):1178–1181.PubMedCrossRefGoogle Scholar
  54. Iftimia, N. V., B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney. 2005. A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Review of Scientific Instruments 76 (6):064301.CrossRefGoogle Scholar
  55. Isenberg, G., M. V. Sivak, A. Chak, R. C. K. Wong, J. E. Willis, B. Wolf, D. Y. Rowland, A. Das, and A. Rollins. 2005. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointestinal Endoscopy 62 (6):825–831.PubMedCrossRefGoogle Scholar
  56. Izatt, J. A., M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch. 1997. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy. Optics Letters 22 (18):1439–1441.PubMedCrossRefGoogle Scholar
  57. Jackle, S., N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra. 2000. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract – toward optical biopsy. Endoscopy 32 (10):743–749.PubMedCrossRefGoogle Scholar
  58. Jung, W. G., J. Zhang, J. R. Chung, P. Wilder-Smith, M. Brenner, J. S. Nelson, and Z. P. Chen. 2005. Advances in oral cancer detection using optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics 11 (4):811–817.CrossRefGoogle Scholar
  59. Kawakami-Wong, H., S. G. Gu, M. J. Hammer-Wilson, J. B. Epstein, Z. P. Chen, and P. Wilder-Smith. 2007. In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study. Journal of Biomedical Optics 12 (5):051702.PubMedCrossRefGoogle Scholar
  60. Kirkpatrick, S. J., R. K. Wang, and D. D. Duncan. 2006. OCT-based elastography for large and small deformations. Optics Express 14 (24):11585–11597.PubMedCrossRefGoogle Scholar
  61. Ko, H. J., W. Tan, R. Stack, and S. A. Boppart. 2006. Optical coherence elastography of engineered and developing tissue. Tissue Engineering 12 (1):63–73.PubMedCrossRefGoogle Scholar
  62. Kuranov, R. V., V. V. Sapozhnikova, H. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova. 2002. Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes. Quantum Electronics 32 (11):993–998.CrossRefGoogle Scholar
  63. Lee, T. M., A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. J. Toublan, K. S. Suslick, and S. A. Boppart. 2003. Engineered microsphere contrast agents for optical coherence tomography. Optics Letters 28 (17):1546–1548.PubMedCrossRefGoogle Scholar
  64. Lee, S. W., J. Y. Yoo, J. H. Kang, M. S. Kang, S. H. Jung, Y. Chong, D. S. Cha, K. H. Han, and B. M. Kim. 2008. Optical diagnosis of cervical intraepithelial neoplasm (CIN) using polarization-sensitive optical coherence tomography. Optics Express 16 (4):2709–2719.PubMedCrossRefGoogle Scholar
  65. Leitgeb, R. A., L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski. 2003. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express 11 (23):3116–3121.PubMedCrossRefGoogle Scholar
  66. Lexer, F., C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher. 1999. Dynamic coherent focus OCT with depth-independent transversal resolution. Journal of Modern Optics 46 (3):541–553.Google Scholar
  67. Li, H., B. A. Standish, A. Mariampillai, N. R. Munce, Y. X. Mao, S. Chiu, N. E. Alarcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang. 2006. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers in Surgery and Medicine 38 (8):754–761.PubMedCrossRefGoogle Scholar
  68. Liang, X., A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart. 2008. Optical micro-scale mapping of dynamic biomechanical tissue properties. Optics Express 16:11052–11065.PubMedCrossRefGoogle Scholar
  69. Liberman, L., D. D. Dershaw, P. P. Rosen, A. F. Abramson, B. M. Deutch, and L. E. Hann. 1994. Stereotaxic 14-gauge breast biopsy – how many core biopsy specimens are needed. Radiology 192 (3):793–795.PubMedGoogle Scholar
  70. Lingley-Papadopoulos, C. A., M. H. Loew, M. J. Manyak, and J. M. Zara. 2008. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. Journal of Biomedical Optics 13:024002.CrossRefGoogle Scholar
  71. Liu, B., and M. E. Brezinski. 2007. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. Journal of Biomedical Optics 12 (4):044007.PubMedCrossRefGoogle Scholar
  72. Liu, G. Y., J. S. Lu, K. W. Shen, J. Wu, C. M. Chen, Z. Hu, Z. Z. Shen, T. Q. Zhang, and Z. M. Shao. 2008. Fiberoptic ductoscopy combined with cytology testing in the patients of spontaneous nipple discharge. Breast Cancer Research and Treatment 108 (2):271–277.PubMedCrossRefGoogle Scholar
  73. Lu, C. W., C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang. 2008. Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography. Optics Letters 33 (5):416–418.PubMedCrossRefGoogle Scholar
  74. Luo, W., F. T. Nguyen, A. M. Zysk, T. L. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart. 2005. Optical biopsy of lymph node morphology using optical coherence tomography. Technology in Cancer Research & Treatment 4 (5):539–547.Google Scholar
  75. Manyak, M. J., N. D. Gladkova, J. H. Makari, A. M. Schwartz, E. V. Zagaynova, L. Zolfaghari, J. M. Zara, R. Iksanov, and F. I. Feldchtein. 2005. Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. Journal of Endourology 19 (5):570–574.PubMedCrossRefGoogle Scholar
  76. McMasters, K. M., T. M. Tuttle, D. J. Carlson, C. M. Brown, R. D. Noyes, R. L. Glaser, D. J. Vennekotter, P. S. Turk, P. S. Tate, A. Sardi, P. B. Cerrito, and M. J. Edwards. 2000. Sentinel lymph node biopsy for breast cancer: a suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 18 (13):2560–2566.Google Scholar
  77. Morgner, U., W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto. 2000. Spectroscopic optical coherence tomography. Optics Letters 25 (2):111–113.PubMedCrossRefGoogle Scholar
  78. Mourant, J. R., M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, and J. P. Freyer. 2000. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. Journal of Biomedical Optics 5 (2):131–137.PubMedCrossRefGoogle Scholar
  79. Nguyen, F. T., A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart. 2008a. Intraoperative evaluation of breast tumor margins with optical coherence tomography. (unpublished).Google Scholar
  80. Nguyen, F. T., A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, S.G. Adie, and S. A. Boppart. 2008b. Evaluation of optical coherence tomography for the intraoperative assessment of lymph nodes in breast cancer. (unpublished).Google Scholar
  81. Nguyen, F. T., A. M. Zysk, J. G. Kotynek, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, E. J. Chaney, and S. A. Boppart. 2007. Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer, at San Jose, CA, United States, Proc. SPIE Vol. 6430:64300.Google Scholar
  82. Oldenburg, A. L., J. R. Gunther, and S. A. Boppart. 2005a. Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Optics Letters 30 (7):747–749.PubMedCrossRefGoogle Scholar
  83. Oldenburg, A. L., M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart. 2006. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express 14 (15):6724–6738.PubMedCrossRefGoogle Scholar
  84. Oldenburg, A. L., F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart. 2005b. Magnetomotive contrast for in vivo optical coherence tomography. Optics Express 13 (17):6597–6614.PubMedCrossRefGoogle Scholar
  85. Oldenburg, A. L., C. Y. Xu, and S. A. Boppart. 2007. Spectroscopic optical coherence tomography and microscopy. IEEE Journal of Selected Topics in Quantum Electronics 13 (6):1629–1640.CrossRefGoogle Scholar
  86. Olmedo, J. M., K. E. Warschaw, J. M. Schmitt, and D. L. Swanson. 2006. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. Journal of the American Academy of Dermatology 55 (3):408–412.PubMedCrossRefGoogle Scholar
  87. Olmedo, J. M., K. E. Warschaw, J. M. Schmitt, and D. L. Swanson. 2007. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatologic Surgery 33 (4):421–426.PubMedCrossRefGoogle Scholar
  88. Pan, Y. T., R. Birngruber, and R. Engelhardt. 1997. Contrast limits of coherence-gated imaging in scattering media. Applied Optics 36 (13):2979–2983.PubMedCrossRefGoogle Scholar
  89. Pan, Y. T., J. P. Lavelle, S. I. Bastacky, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Farkas. 2001. Detection of tumorigenesis in rat bladders with optical coherence tomography. Medical Physics 28 (12):2432–2440.PubMedCrossRefGoogle Scholar
  90. Pan, Y. T., T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel. 2003. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography. Optics Letters 28 (24):2485–2487.PubMedCrossRefGoogle Scholar
  91. Park, B. H., C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer. 2001. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics 6 (4):474–479.PubMedCrossRefGoogle Scholar
  92. Pfau, P. R., M. V. Sivak, A. Chak, M. Kinnard, R. C. K. Wong, G. A. Isenberg, J. A. Izatt, A. Rollins, and V. Westphal. 2003. Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography. Gastrointestinal Endoscopy 58 (2):196–202.PubMedCrossRefGoogle Scholar
  93. Pijnappel, R. M., M. van den Donk, R. Holland, W. P. Th M. Mali, J. L. Peterse, J. H. C. L. Hendriks, and P. H. M. Peeters. 2004. Diagnostic accuracy for different strategies of image-guided breast intervention in cases of nonpalpable breast lesions. British Journal of Cancer 90 (3):595–600.PubMedCrossRefGoogle Scholar
  94. Pitris, C., C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto. 2000. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. Journal of Gastroenterology 35 (2):87–92.PubMedCrossRefGoogle Scholar
  95. Povazay, B., K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer. 2002. Submicrometer axial resolution optical coherence tomography. Optics Letters 27 (20): 1800–1802.PubMedCrossRefGoogle Scholar
  96. Qi, X., M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins. 2006. Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. Journal of Biomedical Optics 11 (4):044010.PubMedCrossRefGoogle Scholar
  97. Ralston, T. S., D. L. Marks, P. S. Carney, and S. A. Boppart. 2007. Interferometric synthetic aperture microscopy. Nature Physics 3 (2):129–134.CrossRefGoogle Scholar
  98. Ralston, T. S., D. L. Marks, P. S. Carney, and S. A. Boppart. 2008. Real-time interferometric synthetic aperture microscopy. Optics Express 16 (4):2555–2569.PubMedCrossRefGoogle Scholar
  99. Ramachandran, J., T. M. Powers, S. Carpenter, A. Garcia-Lopez, J. P. Freyer, and J. R. Mourant. 2007. Light scattering and microarchitectural differences between tumorigenic and non-tumorigenic cell models of tissue. Optics Express 15 (7):4039–4053.PubMedCrossRefGoogle Scholar
  100. Rao, K. D., M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt. 2003. Molecular contrast in optical coherence tomography by use of a pump-probe technique. Optics Letters 28 (5): 340–342.PubMedCrossRefGoogle Scholar
  101. Reed, W. A., M. F. Yan, and M. J. Schnitzer. 2002. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Optics Letters 27 (20):1794–1796.PubMedCrossRefGoogle Scholar
  102. Reynolds, H. E. 2000. Core needle biopsy of challenging benign breast conditions: a comprehensive literature review. American Journal of Roentgenology 174 (5):1245–1250.PubMedGoogle Scholar
  103. Ridgway, J. M., W. B. Armstrong, S. Guo, U. Mahmood, J. P. Su, R. P. Jackson, T. Shibuya, R. L. Crumley, M. Gu, Z. P. Chen, and B. J. F. Wong. 2006. In vivo optical coherence tomography of the human oral cavity and oropharynx. Archives of Otolaryngology-Head & Neck Surgery 132 (10):1074–1081.CrossRefGoogle Scholar
  104. Rogowska, J., N. A. Patel, J. G. Fujimoto, and M. E. Brezinski. 2004. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90 (5):556–562.PubMedCrossRefGoogle Scholar
  105. Rogowska, J., N. Patel, S. Plummer, and M. E. Brezinski. 2006. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. British Journal of Radiology 79 (945):707–711.PubMedCrossRefGoogle Scholar
  106. Saleh, B. E. A., and M. C. Teich. 1991. Fundamentals of Photonics, Wiley Series in Pure and Applied Optics. New York: Wiley.Google Scholar
  107. Sapozhnikova, V. V., N. M. Shakhova, V. A. Kamensky, S. A. Petrova, L. B. Snopova, and R. V. Kuranov. 2005. Capabilities of fluorescence spectroscopy using 5-ALA and optical coherence tomography for diagnosis of neoplastic processes in the uterine cervix and vulva. Laser Physics 15 (12):1664–1673.Google Scholar
  108. Sarvazyan, A. P., O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov. 1998. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound in Medicine and Biology 24 (9):1419–1435.PubMedCrossRefGoogle Scholar
  109. Schmitt, J. M. 1998. OCT elastography: imaging microscopic deformation and strain of tissue. Optics Express 3 (6):199–211.PubMedCrossRefGoogle Scholar
  110. Schmitt, J. M. 1999. Optical coherence tomography (OCT): a review. IEEE Journal of Selected Topics in Quantum Electronics 5 (4):1205–1215.CrossRefGoogle Scholar
  111. Schuman, J. S., C. A. Puliafito, and J. G. Fujimoto. 2004. Optical Coherence Tomography of Ocular Diseases: SLACK Inc., Thorofare, NJ.Google Scholar
  112. Shankar, P. M., V. A. Dumane, C. W. Piccoli, J. M. Reid, F. Forsberg, and B. B. Goldberg. 2003. Computer-aided classification of breast masses in ultrasonic B-scans using a multiparameter approach. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 50 (8):1002–1009.CrossRefGoogle Scholar
  113. Shen, K. W., J. Wu, J. S. Lu, Q. X. Han, Z. Z. Shen, M. Nguyen, Z. M. Shao, and S. H. Barsky. 2000. Fiberoptic ductoscopy for patients with nipple discharge. Cancer 89 (7):1512–1519.PubMedCrossRefGoogle Scholar
  114. Standish, B. A., X. Jin, J. Smolen, A. Mariampillai, N. R. Munce, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang. 2007a. Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. Journal of Biomedical Optics 12 (3):034022.PubMedCrossRefGoogle Scholar
  115. Standish, B. A., V. X. D. Yang, N. R. Munce, L. M. W. K. Song, G. Gardiner, A. Lin, Y. I. Mao, A. Vitkin, N. E. Marcon, and B. C. Wilson. 2007b. Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett’s esophagus. Gastrointestinal Endoscopy 66 (2):326–333.PubMedCrossRefGoogle Scholar
  116. Strasswimmer, J., M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer. 2004. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics 9 (2):292–298.PubMedCrossRefGoogle Scholar
  117. Swanson, E. A., D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito. 1992. High-speed optical coherence domain reflectometry. Optics Letters 17 (2):151–153.PubMedCrossRefGoogle Scholar
  118. Swenson, K. K., M. J. Nissen, C. Ceronsky, L. Swenson, M. W. Lee, and T. M. Tuttle. 2002. Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer. Annals of Surgical Oncology 9 (8):745–753.PubMedCrossRefGoogle Scholar
  119. Tearney, G. J., M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto. 1995. Determination of the refractive-index of highly scattering human tissue by optical coherence tomography. Optics Letters 20 (21):2258–2260.PubMedCrossRefGoogle Scholar
  120. Tumlinson, A. R., L. P. Hariri, U. Utzinger, and J. K. Barton. 2004. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Applied Optics 43 (1):113–121.PubMedCrossRefGoogle Scholar
  121. Veronesi, U., G. Paganelli, G. Viale, A. Luini, S. Zurrida, V. Galimberti, M. Intra, P. Veronesi, C. Robertson, P. Maisonneuve, G. Renne, C. De Cicco, F. De Lucia, and R. Gennari. 2003. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. The New England Journal of Medicine 349 (6):546–553.PubMedCrossRefGoogle Scholar
  122. Wang, Z. G., D. B. Durand, M. Schoenberg, and Y. T. Pan. 2005. Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model. Journal of Urology 174 (6):2376–2381.PubMedCrossRefGoogle Scholar
  123. Wang, R. K. K., S. Kirkpatrick, and M. Hinds. 2007a. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Applied Physics Letters 90 (16):164105.CrossRefGoogle Scholar
  124. Wang, Z. G., C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan. 2007b. In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography. Journal of Biomedical Optics 12 (3):034009.PubMedCrossRefGoogle Scholar
  125. Whiteman, S. C., Y. Yang, D. G. van Pittius, M. Stephens, J. Parmer, and M. A. Spiteri. 2006. Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes. Clinical Cancer Research 12 (3):813–818.PubMedCrossRefGoogle Scholar
  126. Wilder-Smith, P., W. G. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. P. Chen. 2004. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers in Surgery and Medicine 35 (4):269–275.PubMedCrossRefGoogle Scholar
  127. Wilder-Smith, P., T. Krasieva, W. G. Jung, J. Zhang, Z. P. Chen, K. Osann, and B. Tromberg. 2005. Noninvasive imaging of oral premalignancy and malignancy. Journal of Biomedical Optics 10 (5):051601.PubMedCrossRefGoogle Scholar
  128. Wong, B. J. F., R. P. Jackson, S. G. Guo, J. M. Ridgway, U. Mahmood, J. P. Su, T. Y. Shibuya, R. L. Crumley, M. Gu, W. B. Armstrong, and Z. P. Chen. 2005. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope 115 (11):1904–1911.PubMedCrossRefGoogle Scholar
  129. Xie, T. Q., M. L. Zeidel, and Y. T. Pan. 2002. Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes. Optics Express 10 (24):1431–1443.PubMedGoogle Scholar
  130. Xu, C. Y., F. Kamalabadi, and S. A. Boppart. 2005. Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography. Applied Optics 44 (10):1813–1822.PubMedCrossRefGoogle Scholar
  131. Xu, C. Y., C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart. 2006. Spectroscopic spectral-domain optical coherence microscopy. Optics Letters 31 (8):1079–1081.PubMedCrossRefGoogle Scholar
  132. Xu, C. Y., J. Ye, D. L. Marks, and S. A. Boppart. 2004. Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters 29 (14):1647–1649.PubMedCrossRefGoogle Scholar
  133. Yadlowsky, M. J., J. M. Schmitt, and R. F. Bonner. 1995. Multiple-scattering in optical coherence microscopy. Applied Optics 34 (25):5699–5707.PubMedCrossRefGoogle Scholar
  134. Yang, C. H. 2005. Molecular contrast optical coherence tomography: a review. Photochemistry and Photobiology 81 (2):215–237.PubMedCrossRefGoogle Scholar
  135. Yang, C. H., L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt. 2004. Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent. Optics Letters 29 (17):2016–2018.PubMedCrossRefGoogle Scholar
  136. Yang, V. X. D., S. J. Tang, M. L. Gordon, B. Qi, G. R. Gardiner, M. Cirocco, P. Kortan, G. B. Haber, G. Kandel, I. A. Vitkin, B. C. Wilson, and N. E. Marcon. 2005. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointestinal Endoscopy 61 (7):879–890.PubMedCrossRefGoogle Scholar
  137. Yaqoob, Z., E. McDowell, J. G. Wu, X. Heng, J. Fingler, and C. H. Yang. 2006. Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent. Journal of Biomedical Optics 11 (5):054017.PubMedCrossRefGoogle Scholar
  138. Yasuno, Y., V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai. 2005. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Optics Express 13 (26):10652–10664.PubMedCrossRefGoogle Scholar
  139. Youngquist, R. C., S. Carr, and D. E. N. Davies. 1987. Optical coherence-domain reflectometry – a new optical evaluation technique. Optics Letters 12 (3):158–160.PubMedCrossRefGoogle Scholar
  140. Zagaynova, E., M. J. Manyak, O. Streltsova, N. Gladkova, F. Feldchtein, and V. Kamensky. 2004. A multicenter study of optical coherence tomography for diagnosis and guided surgery of bladder cancer. Journal of Clinical Oncology 22 (14):391S–391S.Google Scholar
  141. Zagaynova, E. V., O. S. Streltsova, N. D. Gladkova, L. B. Snopova, G. V. Gelikonov, F. I. Feldchtein, and A. N. Morozov. 2002. In vivo optical coherence tomography feasibility for bladder disease. Journal of Urology 167 (3):1492–1496.PubMedCrossRefGoogle Scholar
  142. Zakaria, S., A. C. Degnim, C. G. Kleer, K. A. Diehl, V. M. Cimmino, A. E. Chang, L. A. Newman, and M. S. Sabel. 2007. Sentinel lymph node biopsy for breast cancer: how many nodes are enough? Journal of Surgical Oncology 96 (7):554–559.PubMedCrossRefGoogle Scholar
  143. Zara, J. M., and C. A. Lingley-Papadopoulos. 2008. Endoscopic OCT approaches toward cancer diagnosis. IEEE Journal of Selected Topics in Quantum Electronics 14 (1):70–81.CrossRefGoogle Scholar
  144. Zhao, Y. H., Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson. 2000. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters 25 (2):114–116.PubMedCrossRefGoogle Scholar
  145. Zvyagin, A. V., J. B. FitzGerald, K. K. M. B. D. Silva, and D. D. Sampson. 2000. Real-time detection technique for Doppler optical coherence tomography. Optics Letters 25 (22): 1645–1647.PubMedCrossRefGoogle Scholar
  146. Zvyagin, A. V., K. K. M. B. D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson. 2003. Refractive index tomography of turbid media by bifocal optical coherence refractometry. Optics Express 11 (25):3503–3517.PubMedCrossRefGoogle Scholar
  147. Zysk, A. M., S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart. 2007a. Needle-based refractive index measurement using low-coherence interferometry. Optics Letters 32 (4):385–387.PubMedCrossRefGoogle Scholar
  148. Zysk, A. M., and S. A. Boppart. 2006. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. Journal of Biomedical Optics 11 (5):054015.PubMedCrossRefGoogle Scholar
  149. Zysk, A. M., E. J. Chaney, and S. A. Boppart. 2006. Refractive index of carcinogen-induced rat mammary tumours. Physics in Medicine and Biology 51 (9):2165–2177.PubMedCrossRefGoogle Scholar
  150. Zysk, A. M., D. L. Marks, D. Y. Liu, and S. A. Boppart. 2007b. Needle-based reflection refractometry of scattering samples using coherence-gated detection. Optics Express 15 (8):4787–4794.PubMedCrossRefGoogle Scholar
  151. Zysk, A. M., F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart. 2008. Clinical feasibility of microcopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. (unpublished).Google Scholar
  152. Zysk, A. M., F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart. 2007c. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics 12 (5):051403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations