Skip to main content

Nodal Staging of Cancer Using Diagnostic Optical Imaging Techniques

  • Chapter
  • First Online:
Optical Imaging of Cancer

Abstract

In 2007, approximately 1.5 million Americans were diagnosed with invasive carcinomas (American Cancer Society Cancer Facts & Figures, 2007). For the majority of these patients, their disease was staged using the TNM disease classification approved by the American Joint Committee on Cancer whereby Tumor extent, regional lymph Node involvement, and presence or absence of distant Metastases are determined. Anatomical imaging with computed tomography (CT), magnetic resonance (MR), or ultrasound (US) typically provides a measurement of the size and extent of the locoregional disease while distant metastases in advanced disease are detected through whole-body nuclear bone scanning or positron emission tomography (PET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALND:

axillary lymph node dissection

BCRL:

breast cancer-related lymphedema

CCD:

charge coupled device

CT:

computed tomography

HER2:

human epidermal growth factor receptor-2

ID:

intradermal

IV:

intravenous

IHC:

immunohistochemistry

H&E:

hematoxylin and eosin

LN:

lymph nodes

MR:

magnetic resonance

NIR:

near-infrared

PET:

positron emission tomography

PLND:

pelvic lymph node dissection

RT-PCR:

reverse transcription polymerase chain reaction

SPECT:

single photon emission computed tomography

SLNB:

lymph node biopsy

SLN:

sentinel lymph node

USIPO:

ultrasmall iron oxide particles

US:

and ultrasound

References

  • Abdelnabi, H.H., et al., Clinical-experience with intra lymphatic administration of in-111 labeled monoclonal-antibody pay-276 for the detection of pelvic nodal metastases in prostatic-carcinoma. European Journal of Nuclear Medicine, 1990. 16(3): 149–156.

    Article  CAS  Google Scholar 

  • Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews. Molecular Cell Biology, 2007. 8(6): 464–478.

    Article  CAS  PubMed  Google Scholar 

  • Adams, K.E., et al., Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. Journal of Biomedical Optics, 2007. 12(2): 020417–1–024017–9.

    Article  Google Scholar 

  • Allaf, M.E., et al., Anatomical extent of lymph node dissection: Impact on men with clinically localized prostate cancer. Journal of Urology, 2004. 172(5): 1840–1844.

    Article  PubMed  Google Scholar 

  • American Cancer Society Cancer Facts & Figures. 2007.

    Google Scholar 

  • Armer, J.M., The problem of post-breast cancer lymphedema: impact and measurement issues. Cancer Investigation, 2005. 23(1): 76–83.

    PubMed  Google Scholar 

  • Badgwell, B., et al., Pelvic lymph node dissection is beneficial in subsets of patients with node-positive melanoma. Annals of Surgical Oncology, 2007. 14(10): 2867–2875.

    Article  PubMed  Google Scholar 

  • Bellin, M.F., et al., Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles – initial clinical experience. Radiology, 1998. 207(3): 799–808.

    CAS  PubMed  Google Scholar 

  • Blacker, H.A., et al., How regenerating lymphatics function: lessons from lizard tails. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2007. 290(1): 108–114.

    Article  Google Scholar 

  • Bland, K.I., et al., Axillary dissection in breast-conserving surgery for stage I and II breast cancer: a national cancer data base study of patterns of omission and implications for survival. Journal of the American College of Surgeons, 1999. 188(6): 586–595.

    Article  CAS  PubMed  Google Scholar 

  • Blumencranz, P., et al., Sentinel node staging for breast cancer: intraoperative molecular pathology overcomes conventional histologic sampling errors. American Journal of Surgery, 2007. 194(4): 426–432.

    Article  PubMed  Google Scholar 

  • Bono, P., et al., High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clinical Cancer Research, 2004. 10(21): 7144–7149.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, M.C., et al., Occult axillary lymph node Metastases in breast cancer do matter results of 10-year survival analysis. American Journal of Surgical Pathology, 2002. 26(10): 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  • Deland, F.H., E.E. Kim, and D.M. Goldenberg, Lymphoscintigraphy with radionuclide-labeled antibodies to carcinoembryonic antigen. Cancer Research, 1980. 40(8): 2997–3000.

    CAS  PubMed  Google Scholar 

  • Engelstad, B.L., et al., Phase-1 immunolymphoscintigraphy with an in-111 labeled antimelanoma monoclonal-antibody. Radiology, 1986. 161(2): 419–422.

    CAS  PubMed  Google Scholar 

  • Fang, J.M., et al., Mutations in FOXC2 (MFH-1) a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. American Journal of Human Genetics, 2000. 67(6): 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  • Foeldi, M. and E. Foeldi, Foeldi's Textbook of Lymphology, ed. L. Biotext, 2006, San Francisco, CA.

    Google Scholar 

  • Goldberg, B.B., et al., Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology, 2004. 230(3): 727–734.

    Article  PubMed  Google Scholar 

  • Greene, F.L., et al., AJCC Cancer Staging Manual. 6th ed. 2002, Springer, New York.

    Book  Google Scholar 

  • Harrell, M.I., B.M. Iritani, and A. Ruddell, Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. American Journal of Pathology, 2007. 170(2): 774–786.

    Article  PubMed  Google Scholar 

  • Hauff, P., et al., Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs. Radiology, 2004. 231(3): 667–673.

    Article  PubMed  Google Scholar 

  • Hirakawa, S., et al., VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007. 109(3): 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  • Houston, J.P., et al., Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe. Journal of Biomedical Optics, 2005. 10(5): 054010.

    Article  PubMed  Google Scholar 

  • Hughes, S.J., et al., A rapid, fully automated, molecular-based assay accurately analyzes sentinel lymph nodes for the presence of metastatic breast cancer. Annals of Surgery, 2006. 243(3): 389–398.

    Article  PubMed  Google Scholar 

  • Hwang, K., et al., Improved excitation light rejection enhances small-animal fluorescent optical imaging. Molecular Imaging, 2005. 4(3): 194–204.

    PubMed  Google Scholar 

  • Hwang, K., et al., Influence of excitation light rejection on forward model mismatch in optical tomography. Physics in Medicine and Biology, 2006. 51(22): 5889–902.

    Article  CAS  PubMed  Google Scholar 

  • Kairemo, K.J.A., Immunolymphoscintigraphy with Tc-99m-labeled monoclonal-antibody (Bw-431-26) reacting with carcinoembryonic antigen in breast-cancer. Cancer Research, 1990. 50(3): S949–S954.

    Google Scholar 

  • Keenan, A.M., et al., Immunolymphoscintigraphy in patients with lymphoma after subcutaneous injection of indium-111-labeled T101 monoclonal-antibody. Journal of Nuclear Medicine, 1987a. 28(1): 42–46.

    CAS  PubMed  Google Scholar 

  • Keenan, A.M., et al., Immunolymphoscintigraphy and the dose dependence of in-111 labeled T101 monoclonal-antibody in patients with cutaneous T-cell lymphoma. Cancer Research, 1987b. 47(22): 6093–6099.

    CAS  PubMed  Google Scholar 

  • Kingsmore, D.B., et al., Axillary recurrence in breast cancer. European Journal of Surgical Oncology, 2005. 31(3): 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Lerner, S.P., et al., The rationale for en-bloc pelvic lymph-node dissection for bladder-cancer patients with nodal metastases - long-term results. Journal of Urology, 1993. 149(4): 758–765.

    CAS  PubMed  Google Scholar 

  • Lohrmann, C., E. Foeldi, and M. Langer, Indirect magnetic resonance lymphangiography in patients with lymphedema – preliminary results in humans. European Journal of Radiology, 2006a. 59(3): 401–406.

    Article  PubMed  Google Scholar 

  • Lohrmann, C., et al., High-resolution MR lymphangiography in patients with primary and secondary lymphedema. American Journal of Roentgenology, 2006b. 187(2): 556–561.

    Article  PubMed  Google Scholar 

  • Lohrmann, C., et al., Gaclotericlol for MR imaging of lymphatic vessels in lymphoedematous patients: initial experience after intracutaneous injection. British Journal of Radiology, 2007. 80(955): 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Lotze, M.T., et al., Monoclonal-antibody imaging of human-melanoma – radioimmunodetection by subcutaneous or systemic injection. Annals of Surgery, 1986. 204(3): 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Mansel, R.E., et al., Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC trial. Journal of National Cancer Institute, 2006. 98(9): 599–609.

    Article  Google Scholar 

  • Matsushima, S., et al., Nonenhanced magnetic resonance lymphoductography: visualization of lymphatic system of the trunk on 3-dimensional heavily T2-weighted image with 2-dimensional prospective acquisition and correction. Journal of Computer Assisted Tomography, 2007. 31(2): 299–302.

    Article  PubMed  Google Scholar 

  • Mellor, R.H., et al., Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation, 2007. 115(14): 1912–1920.

    Article  CAS  PubMed  Google Scholar 

  • Moghimi, S.M. and A.R. RajabiSiahboomi, Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Progress in Biophysics and Molecular Biology, 1996. 65(3): 221–249.

    Article  CAS  PubMed  Google Scholar 

  • NCCN Guideline The NCCN GUIDELINE: Clinical Practice Guidelines in Oncology (Version 3.2005). (C) 2006 National Comprehensive Cancer Network, Inc., Available at: http://www.nccn.org.

  • Nelp, W.B., et al., Preliminary studies of monoclonal-antibody lymphoscintigraphy in malignant-melanoma. Journal of Nuclear Medicine, 1987. 28(1): 34–41.

    CAS  PubMed  Google Scholar 

  • Partsch, H., A. Urbanek, and B. Wenzelhora, The dermal lymphatics in lymphoedema visualized by indirect lymphography. British Journal of Dermatology, 1984. 110(4): 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Partsch, H., B.I. Wenzelhora, and A. Urbanek, Differential-diagnosis of lymphedema after indirect lymphography with lotasul. Lymphology, 1983. 16(1): 12–18.

    CAS  PubMed  Google Scholar 

  • Petrova, T.V., et al., Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Medicine, 2004. 10(9): 974–981.

    Article  CAS  PubMed  Google Scholar 

  • Querzoli, P., et al., Axillary lymph node nanometastases are prognostic factors for disease-free survival and metastatic relapse in breast cancer patients. Clinical Cancer Research, 2006. 12(22): 6696–6701.

    Article  CAS  PubMed  Google Scholar 

  • Rabin, O., et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials, 2006. 5(2): 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, J.C., I-C. Tan, M.V. Marshal, C.E. Fife, and E.M. Sevick-Muraca, Lymphatic imaging in humans with near-infrared fluorescence. Current Opinion in Biotechnology, 2009. 20:1–9.

    Google Scholar 

  • Reynolds, J.S., T.L. Troy, and E.M. Sevick-Muraca, Multipixel techniques for frequency-domain photon migration imaging. Biotechnology Progress, 1997. 13(5): 669–680.

    Article  CAS  PubMed  Google Scholar 

  • Ridner, S.H., Pretreatment lymphedema education and identified educational resources in breast cancer patients. Patient Education and Counseling, 2006. 61: 72–79.

    Article  PubMed  Google Scholar 

  • Ruehm, S.G., T. Schroeder, and J.F. Debatin, Interstitial MR lymphography with gadoterate meglumine: initial experience in humans. Radiology, 2001. 220(3): 816–821.

    Article  CAS  PubMed  Google Scholar 

  • Sampath, L., et al., Dual-labeled trastuzumab-based imaging agent for the detection of Human Epidermal Growth Factor Receptor-2 (HER2) overexpression in breast cancer. Journal of Nuclear Medicine, 2007 (cover illustration). 48: 1501–1510.

    Article  CAS  PubMed  Google Scholar 

  • Sampath, L., W. Wang, and E.M. Sevick-Muraca, Near infrared optical for nodal staging. Journal of Biomedical Optics, 2008. 13:(4) 041312.

    Google Scholar 

  • Sevick-Muraca, E.M., et al., Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology, 2008. 246(3): 734–741.

    Article  PubMed  Google Scholar 

  • Sevick-Muraca, E.M. and D.Y. Paithankar, Fluorescence imaging system and measurement, 1999. Us patent 5,865,754.

    Google Scholar 

  • Sevick-Muraca, E.M. and J.C. Rasmussen, Molecular imaging with optics: primer case for near-infrared fluorescence techniques in personalized medicine. Journal of Biomedical Optics, 2008. 13(4): 041303–1–16.

    Article  Google Scholar 

  • Sharma, R., et al., New horizons for imaging lymphatic function. The New York Academy of Sciences, 2008. 1131: 13–36.

    Article  CAS  Google Scholar 

  • Shen, J., et al., Feasibility and accuracy of sentinel lymph node biopsy after preoperative chemotherapy in breast cancer patients with documented axillary metastases. Cancer, 2007. 109(7): 1255–1263.

    Article  PubMed  Google Scholar 

  • Singletary, S.E., et al., Revision of the American Joint Committee on Cancer staging system for breast cancer. Journal of Clinical Oncology, 2002. 20(17): 3628–3636.

    Article  PubMed  Google Scholar 

  • Skobe, M., et al., Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Medicine, 2001. 7(2): 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Stein, J.P., et al., Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. Journal of Clinical Oncology, 2001. 19(3): 666–675.

    CAS  PubMed  Google Scholar 

  • Su, J.L., et al., The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell, 2006. 9(3): 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Suga, K., et al., Visualization of breast lymphatic pathways with an indirect computed tomography lymphography using a nonionic monometric contrast medium iopamidol – preliminary results. Investigative Radiology, 2003. 38(2): 73–84.

    Article  PubMed  Google Scholar 

  • Suga, K., et al., Lymphatic drainage from esophagogastric tract: feasibility of endoscopic CT lymphography for direct visualization of pathways. Radiology, 2006. 238(1): 952–960.

    Google Scholar 

  • Tjandra, J.J., et al., Immunolymphoscintigraphy for the detection of lymph-node metastases from breast-cancer. Cancer Research, 1989. 49(6): 1600–1608.

    CAS  PubMed  Google Scholar 

  • Tjan-Heijnen, V.C.G., et al., Micro-metastases in axillary lymph nodes: an increasing classification and treatment dilemma in breast cancer due to the introduction of the sentinel lymph node procedure. Breast Cancer Research and Treatment, 2001. 70(2): 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Weingartner, K., et al., Anatomical basis for pelvic lymphadenectomy in prostate cancer: results of an autopsy study and implications for the clinic. Journal of Urology, 1996. 156(6): 1969–1971.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, M., et al., Morbidity after inguinal sentinel lymph node biopsy and completion lymph node dissection in patients with cutaneous melanoma. European Journal of Surgical Oncology, 2006. 32(7): 785–789.

    Article  PubMed  Google Scholar 

  • Weinstein, J.N., et al., Monoclonal anitbodies in the lymphatics: toward the diagnosis and therapy of tumor metastases. Science, 1982. 218(4579): 1334–1337.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein, J.N., et al., Monoclonal antibodies in the lymphatics: selective delivery to lymph node metastases of a solid tumor. Science, 1983. 222(4622): 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A.F., P.J. Franks, and C.J. Moffatt, Lymphoedema: estimating the size of the problem. Palliative Medicine, 2005. 19(4): 300–313.

    Article  PubMed  Google Scholar 

  • Yao, M.S., et al., Internal mammary nodal chain drainage is a prognostic indicator in axillary node-positive breast cancer. Annals of Surgical Oncology, 2007. 14(10): 2985–2993.

    Article  PubMed  Google Scholar 

  • Zavagno, G., et al., Axillary recurrence after negative sentinel lymph node biopsy without axillary dissection: a study on 479 breast cancer patients. European Journal of Surgical Oncology, 2005. 31(7): 715–720.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by R01 CA112679 and R01 CA136404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.M. Sevick-Muraca Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sevick-Muraca, E. (2010). Nodal Staging of Cancer Using Diagnostic Optical Imaging Techniques. In: Rosenthal, E., Zinn, K. (eds) Optical Imaging of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93874-5_10

Download citation

Publish with us

Policies and ethics