Skip to main content

Nosocomial Transmission: Methicillin-Resistant Staphylococcus aureus (MRSA)

  • Chapter
  • First Online:
Modern Infectious Disease Epidemiology

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

Nosocomial, or hospital-acquired , infections are an important cause of morbidity and mortality in health-care settings. Within hospitals, we find a gathering of patients with a weakened immune system, who receive all kinds of treatment that may even further weaken host defense mechanisms and that may break natural barriers against pathogens by surgery or by inserting intravascular lines. In such circumstances, even microorganisms that are generally considered harmless may cause fulminate infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin DJ, Bonten MJM, Weinstein RA et al. (1999) Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci USA 96:6908–6913

    Article  Google Scholar 

  • Bergstrom CT, Lo M, Lipsitch M (2004) Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci USA 101:13285–13290

    Article  Google Scholar 

  • Boldin B (2007) Relative effects of barrier precautions and topical antibiotics on nosocomial bacterial transmission: results of multi-compartment models. Bull Math Biol 69:2227–2248

    Article  MathSciNet  MATH  Google Scholar 

  • Bonten MJM, Slaughter S, Ambergen AW et al. (1998) The role of "colonization pressure" in the spread of vancomycin-resistant enterococci. An important infection control variable. Arch Intern Med 158:1127–1132

    Article  Google Scholar 

  • Bonten MJM, Austin DJ, Lipsitch M (2001) Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin Infect Dis 33:1739–1746

    Article  Google Scholar 

  • Bootsma MCJ, Diekmann O, Bonten MJM (2006) Controlling methicillin-resistant Staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci USA 103:5620–5625

    Article  Google Scholar 

  • Bootsma MCJ, Bonten MJM, Nijssen S et al. (2007) An algorithm to estimate the importance of bacterial acquisition routes in hospital settings. Am J Epidemiol 166:841–851

    Article  Google Scholar 

  • Cepeda JA, Whitehouse T, Cooper B et al. (2005) Isolation of patients in single rooms or cohorts to reduce spread of MRSA in intensive-care units: prospective two-centre study. Lancet 365:295–304

    Google Scholar 

  • Cooper BS (2007) Confronting models with data. J Hosp Infect 65(S2):88–92

    Google Scholar 

  • Cooper BS, Lipsitch M (2004) The analysis of hospital infection data using hidden Markov models. Biostatistics 5:223–237

    Article  MATH  Google Scholar 

  • Cooper BS, Medley GF, Scott GM (1999) Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. J Hosp Infect 43:131–147

    Article  Google Scholar 

  • Cooper BS, Stone SP, Kibbler CC et al. (2003) Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling. Health Technol Assessment 7:1–194

    Google Scholar 

  • Cooper BS, Medley GF, Stone SP et al. (2004) Methicillin-resistant Staphylococcus aureus in hospitals and the community: Stealth dynamics and control catastrophes. Proc Natl Acad Sci USA 101:10223–10228

    Article  Google Scholar 

  • D’Agata EM, Horn MA, Webb GF (2005) A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci. J Infect Dis 192:2004–2011

    Article  Google Scholar 

  • Dancer SJ (2008) Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infec Dis 8:101–113

    Article  Google Scholar 

  • Drovandi CC, Pettitt AN (2008) Multivariate Markov process models for the transmission of methicillin-resistant Staphylococcus aureus in a hospital ward. Biometrics. doi: 10.1111/j.1541–0420. 2007. 00933.x

    Google Scholar 

  • Forrester M, Pettitt AN (2005) Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillin-resistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol 26:598–606

    Article  Google Scholar 

  • Grundmann H, Hori S, Winter B et al. (2002) Risk factors for the transmission of methicillin-resistant Staphylococcus aureus in an adult intensive care unit: fitting a model to the data. J Infect Dis 185:481–488

    Article  Google Scholar 

  • Harbarth S, Masuet-Aumatell C, Schrenzel J et al. (2006) Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study. Crit Care 10:R25

    Article  Google Scholar 

  • Klevens RM, Edwards JR, Richards CL Jr et al. (2007a) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 122:160–166

    Google Scholar 

  • Klevens RM, Morrison MA, Nadle J et al. (2007b) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J Am Med Assoc 298:1763–1771

    Article  Google Scholar 

  • Kuulasma K (1982) The spatial general epidemic and locally dependent random graphs. J Appl Prob 19:745–758

    Article  Google Scholar 

  • Lipsitch M, Bergstrom CT, Levin BR (2000) The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proc Natl Acad Sci USA 97:1938–1943

    Article  Google Scholar 

  • MacDonald G (1957) The epidemiology and control of malaria. Oxford University Press, London

    Google Scholar 

  • McBryde ES, Bradley LC, Whitby M et al. (2004) An investigation of contact transmission of methicillin-resistant Staphylococcus aureus. J Hosp Infect 58:104–108

    Article  Google Scholar 

  • McBryde ES, Pettitt AN, McEwain DLS (2007) A stochastic mathematical model of methicillin resistant Staphylococcus aureus transmission in an intensive care unit: Predicting the impact of interventions. J Theor Biol 245:470–481

    Article  Google Scholar 

  • Mikolajczyk RT, Sagel U, Bornemann R et al. (2007) A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. J Hosp Infect 65:149–55

    Article  Google Scholar 

  • Nijssen S, Bonten MJM, Weinstein RA (2005) Are active microbiological surveillance and subsequent isolation needed to prevent the spread of methicillin-resistant Staphylococcus aureus? Clin Infect Dis 40:405–409

    Article  Google Scholar 

  • Nijssen S, Bootsma MCJ, Bonten,MJM (2006) Potential confounding in evaluating infection control interventions in hospital settings: changing antibiotic prescription. Clin Infect Dis 43:616–623

    Article  Google Scholar 

  • Pelupessy I, Bonten MJM, Diekmann O (2002) How to assess the relative importance of different colonization routes of pathogens within hospital settings. Proc Natl Acad Sci USA 99:5601–5605

    Article  Google Scholar 

  • Raboud J, Saskin R, Simor A et al. (2005) Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol 26:607–615

    Article  Google Scholar 

  • Robotham JV, Jenkins DR, Medley GF (2006) Screening strategies in surveillance and control of methicillin-resistant Staphylococcus aureus (MRSA). Epidemiol Infect 13:1–15

    Google Scholar 

  • Robotham JV, Scarff CA, Jenkins DR et al. (2007) Meticillin-resistant Staphylococcus aureus (MRSA) in hospitals and the community: model predictions based on the UK situation. J Hosp Infect 65(S2):93–99

    Article  Google Scholar 

  • Ross R (1911) The prevention of malaria (2nd edition). Murray, London

    Google Scholar 

  • Sébille V, Valleron A-J (1997) A computer simulation model for the spread of nosocomial infections caused by multidrug-resistant pathogens. Comput Biomed Res 30:307–322

    Article  Google Scholar 

  • Sébille V, Cheuret S, Valleron A-J (1997) Modeling the spread of resistant nosocomial pathogens in an intensive-care unit. Infect Control Hosp Epidemiol 18:84–92

    Article  Google Scholar 

  • Smith DL, Dushoff J, Perencevich E et al. (2004) Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. Proc Natl Acad Sci USA 101:3709–3714

    Article  Google Scholar 

  • Smith DL, Levin SA, Laxminarayan R (2005) Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proc Natl Acad Sci USA 102:3153–3158

    Article  Google Scholar 

  • Stewart FM, Antia R , Levin BR et al. (1998) The population genetics of antibiotic resistance. II: Analytic theory for sustained populations of bacteria in a community of hosts. Theor Popul Biol 53:152–165

    Article  MATH  Google Scholar 

  • Stone PW, Hedblom EC, Murphy DM et al. (2005) The economic impact of infection control: Making the business case for increased infection control resources. Am J Infect Control 2005 33:542–547

    Article  Google Scholar 

  • Wenzel RP (2003) Prevention and Control of Nosocomial Infections, 4th edition, Lippincott Williams & Wilkins, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J.M. Bonten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonten, M., Bootsma, M. (2009). Nosocomial Transmission: Methicillin-Resistant Staphylococcus aureus (MRSA). In: Krämer, A., Kretzschmar, M., Krickeberg, K. (eds) Modern Infectious Disease Epidemiology. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93835-6_22

Download citation

Publish with us

Policies and ethics