Geographic Information Systems

Part of the Statistics for Biology and Health book series (SBH)


There is a wealth of publications expanding on geoinformation analysis in health sciences. Facing globalisation and the “urban millennium”, interdisciplinary research focusing on the interface between infectious disease epidemiology (IDE) and geoinformation analysis is gaining importance in this context (Kraas 2007; Martinez et al. 2008; UN-Habitat 2006). While it is not feasible to adequately cover the full range of conceptual frameworks and practical approaches in this chapter, we shall focus on the most common techniques and give examples illustrating the potential of geographic information systems (GIS) in IDE. Disease transmission is comprehensively covered in Part III. We hence focus on the relevant methodological issues, being well aware of the fact that an in-depth knowledge on disease transmission is mandatory for effective spatial modelling.


Global Position System Geographic Information System Geographic Information System Transmission Pathway Spatial Decision Support System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert DP, Wilbert MG and Levergood B, eds. (2000) Spatial analysis, GIS, and remote sensing: applications in the health sciences, ChelseaGoogle Scholar
  2. Ali M, Wagatsuma Y, Emch M and Breiman RF (2003) Use of a Geographic Information System for defining spatial risk for dengue transmission in Bangladesh: Role for Aedes Albopictus in an urban outbreak. Am J Trop Med Hyg, 69: 634–640Google Scholar
  3. Barcellos C, Pustai AK, Weber MA and Brito MRV (2005) Identification of places with potential transmission of dengue fever in Porto Alegre using Geographical Information Systems. Revista Da Sociedade Brasileira De Medicina Tropical, 38: 246–250CrossRefGoogle Scholar
  4. Besag J and Newell J (1991) The detection of clusters in rare diseases. J R Stat Soc Ser A (Stat Soc), 154: 143–155CrossRefGoogle Scholar
  5. Boulos MNK (2004) Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom. Int J Health Geogr, 3: 1CrossRefGoogle Scholar
  6. Boulos MNK, Roudsari AV and Carson ER (2001) Health geomatics: An enabling suite of technologies in health and healthcare. J Biomed Inform, 34: 195–219CrossRefGoogle Scholar
  7. Cromley EK and McLafferty SL (2002) Gis and public health, New YorkGoogle Scholar
  8. Cuzick J and Edwards R (1990) Spatial clustering for inhomogeneous populations. J R Stat Soc Ser B (Methodol), 52: 73–104MathSciNetMATHGoogle Scholar
  9. Daniel M, Kolar J and Zeman K (2004) GIS tools for tick and tick-borne disease occurrence. Parasitology, 129: S329–S352CrossRefGoogle Scholar
  10. De Castro MC, Yamagata Y, Mtasiwa D, Tanner M, Utzinger J, Keiser J and Singer BH (2004) Integrated urban malaria control: A case study in Dar Es Salaam, Tanzania. Am J Trop Med Hyg, 71: 103–117Google Scholar
  11. Dransch D (2000) Begriffe und Grundprinzipien der Animation. In: Buziek, G, Dransch, D. and Rase, W.-D. (eds.), Dynamische visualisierung, Berlin, NY, 5–14Google Scholar
  12. Gong P, Xu B and Liang S (2006) Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases. Sci China C-Life Sci, 49: 573–582CrossRefGoogle Scholar
  13. Heinrich J, Gehring U, Cyrys J, Brauer M, Hoek G, Fischer P, Bellander T and Brunekreef B (2005) Exposure to traffic related air pollutants: self reported traffic intensity versus GIS modelled exposure. Occup Environ Med, 62: 517–523CrossRefGoogle Scholar
  14. Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M and Le Sueur D (2000) A spatial statistical approach to malaria mapping. Int. J. Epidemiol, 29: 355–361CrossRefGoogle Scholar
  15. Kraak M-J (1999) Cartography and the Use of Animation. In: Cartwright, W, Peterson, M.P. and Gartner, G. (eds.), Multimedia cartography, Berlin, NYGoogle Scholar
  16. Kraak M-J and Brown A (2001) Web cartography, Padstow, CornwallGoogle Scholar
  17. Kraas F (2007) Megacities and global change: key priorities. Geogr J, 173: 79–82CrossRefGoogle Scholar
  18. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods, 26: 1481–1496MathSciNetMATHCrossRefGoogle Scholar
  19. Kulldorff M, Song C, Gregorio D, Samociuk H and DeChello L (2006) Cancer map patterns: Are they random or not? Am J Prev Med, 30: S37–S49CrossRefGoogle Scholar
  20. Lawson AB and Kleinman K, eds (2005) Spatial and Syndromic Surveillance for Public Health, ChichesterGoogle Scholar
  21. Lillesand TM, Kiefer RW and Chipman JW (2003) Remote Sensing and Image Interpretation. Wiley, New York 784 .Google Scholar
  22. Longley PA, Goodchild MF, Maguire DJ and Rhind DW, eds (2006) Geographic information systems and science. Wiley & Sons, New York 472 .Google Scholar
  23. Martinez J, Mboup G, Sliuzas R and Stein A (2008) Trends in urban and slum indicators across developing world cities, 1990–2003. Habitat Int, 32: 86–108Google Scholar
  24. Matisziw TC, Grubesic TH and Wei H (2008) Downscaling spatial structure for the analysis of epidemiological data. Comput Environ Urban Syst, 32: 81–93Google Scholar
  25. Moore DA and Carpenter TE (1999) Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiol Rev, 21: 143–161Google Scholar
  26. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika, 37: 17–23MathSciNetMATHGoogle Scholar
  27. Rezaeian M, Dunn G, St Leger S and Appleby L (2007) Geographical epidemiology, spatial analysis and geographical information systems: a multidisciplinary glossary. J Epidemiol Community Health, 61: 98–102CrossRefGoogle Scholar
  28. Richards JA and Jia X (2005) Remote sensing digital image analysis. Springer, Berlin, Germany 439Google Scholar
  29. Schmidt G and Schröder W (2007) Flächenhafte Szenarien zur potenziellen Ausbreitung von Malaria vivax in Niedersachsen in Abhängigkeit steigender Lufttemperaturen. In: Strobl, J, Blaschke, T. and Griesebner, G. (eds.), Angewandte geoinformatik 2007. Beiträge zum 19. Agit-Symposium, Heidelberg, 670–680Google Scholar
  30. Song C and Kulldorff M (2003) Power evaluation of disease clustering tests. Int J Health Geogr, 2: 9CrossRefGoogle Scholar
  31. Stevens D, Dragicevic S and Rothley K (2007) iCity: A GIS-CA modelling tool for urban planning and decision making. Environ Model Software, 22: 761–773CrossRefGoogle Scholar
  32. Swartz JB (1998) An entropy-based algorithm for detecting clusters of cases and controls and its comparison with a method using nearest neighbours. Health Place, 4: 67–77CrossRefGoogle Scholar
  33. Tango T (2000) A test for spatial disease clustering adjusted for multiple testing. Stat Med, 19: 191–204CrossRefGoogle Scholar
  34. Tango T and Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr, 4: 11CrossRefGoogle Scholar
  35. Tatem AJ and Hay SI (2004) Measuring urbanization pattern and extent for malaria research: A review of remote sensing approaches. J Urban Health-Bull NY Acad Med, 81: 363–376CrossRefGoogle Scholar
  36. Tobler WR (1970) A computer model simulation of urban growth in the Detroit region. Eco Geogr, 46: 234–240CrossRefGoogle Scholar
  37. UN-Habitat (2006) State of the world’s cities 2006/2007. UN-Habitat, NairobiGoogle Scholar
  38. Waller LA and Gotway CA (2004) Applied spatial statistics for public health data, Hoboken, New JerseyMATHCrossRefGoogle Scholar
  39. Wang F (2006) Quantitative methods and applications in Gis, Boca Raton, New YorkCrossRefGoogle Scholar
  40. Whittemore AS, Friend N, Brown BW and Holly EA (1987) A test to detect clusters of disease. Biometrika, 74: 631–635MathSciNetMATHCrossRefGoogle Scholar
  41. Zeman P and Lynen G (2006) Evaluation of four modelling techniques to predict the potential distribution of ticks using indigenous cattle infestations as calibration data. Exp Appl Acarol, 39: 163–176CrossRefGoogle Scholar
  42. Zhang JT, Pennington DD and Liu XH (2007) GBD-Explorer: Extending open source java GIS for exploring ecoregion-based biodiversity data. Ecolog Inform, 2: 94–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Geography Department Geomatics LabHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations