Privacy Sensitive Surveillance for Assisted Living – A Smart Camera Approach

  • Sven Fleck
  • Wolfgang Straßer


An elderly woman wanders about aimlessly in a home for assisted living. Suddenly, she collapses on the floor of a lonesome hallway. Usually it can take over two hours until a night nurse passes this spot on her next inspection round. But in this case she is already on site after two minutes, ready to help. She has received an alert message on her beeper: “Inhabitant fallen in hallway 2b”. The source: the SmartSurv distributed network of smart cameras for automated and privacy respecting video analysis.Welcome to the future of smart surveillance Although this scenario is not yet daily practice, it shall make clear how such systems will impact the safety of the elderly without the privacy intrusion of traditional video surveillance systems.


Activity Recognition Video Surveillance Assisted Living Human Activity Recognition Video Surveillance System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aghajan, H.K., Augusto, J.C., Wu, C., McCullagh, P.J., Walkden, J.A.: Distributed vision-based accident management for assisted living. In: T. Okadome, T. Yamazaki, M. Makhtari (eds.) ICOST, Lecture Notes in Computer Science, vol. 4541, pp. 196–205. Springer (2007)Google Scholar
  2. [2]
    Biber, P., Fleck, S., Wand, M., Staneker, D., Straβer, W.: First experiences with a mobile platform for flexible 3D model acquisition in indoor and outdoor environments – the Wägele. In: 3D-ARCH’2005: 3D Virtual Reconstruction and Visualization of Complex Architectures. Mestre-Venice, Italy (2005)Google Scholar
  3. [3]
    Bramberger, M., Doblander, A., Maier, A., Rinner, B., Schwabach, H.: Distributed embedded smart cameras for surveillance applications. IEEE Computer 39 (2006)Google Scholar
  4. [4]
    Chalimbaud, P., Berry, F.: Embedded active vision system based on an FPGA architecture. EURASIP J. Embedded Syst. 2007(1), 26–26 (2007). DOI
  5. [5]
    CNN: Smart cameras spot shady behavior. [Accessed 1.3.2008] (2008)
  6. [6]
    Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A system for video surveillance and monitoring. Tech. Rep. CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2000)Google Scholar
  7. [7]
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting objects, shadows and ghosts in video streams by exploiting color and motion information. In: ICIAP ’01: Proceedings of the 11th International Conference on Image Analysis and Processing, p. 360. IEEE Computer Society, Washington, DC, USA (2001)CrossRefGoogle Scholar
  8. [8]
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving shadow suppression in moving object detection with hsvcolor information. In: Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE, pp. 334–339 (2001)Google Scholar
  9. [9]
    Cucchiara, R., Prati, A., Vezzani, R.: A system for automatic face obscuration for privacy purposes. Pattern Recognition Letters 27(15), 1809–1815 (2006)CrossRefGoogle Scholar
  10. [10]
    Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Expert Systems 24(5), 334–345 (2007). DOI 10.1111/j.1468-0394.2007.00438.x. URL Google Scholar
  11. [11]
    Datz, T.: What happens in Vegas stays on tape. [Accessed 1.3.2008] (2008)
  12. [12]
    Dietrich, D., Garn, H., Kebschull, U., Grimm, C., Ben-Ezra, M. (eds.): Ebedded Vision Systems, vol. 2007. EURASIP Journal on Embedded Systems (2007)Google Scholar
  13. [13]
    Dishman, E.: Inventing wellness systems for aging in place. Computer 37(5), 34–41 (2004). DOI CrossRefGoogle Scholar
  14. [14]
    Dufaux, F., Ebrahimi, T.: Scrambling for video surveillance with privacy. In: Conference on Computer Vision and Pattern Recognition Workshop on Privacy Research in Vision (CVPRW-PRIV), p. 160. IEEE Computer Society, Washington, DC, USA (2006). DOI CrossRefGoogle Scholar
  15. [15]
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density for visual surveillance. In: Proceedings of the IEEE, vol. 90, pp. 1151–1163 (2002)Google Scholar
  16. [16]
    of Engineering, T.R.A.: Dilemmas of privacy and surveillance - challenges of technological change. Tech. rep., The Royal Academy of Engineering, London (2007). URL
  17. [17]
    Fleck, S., Busch, F., Biber, P., Straβer, W.: Graph cut based panoramic 3D modeling and ground truth comparison with a mobile platform - the W‭agele. In: IAPR Canadian Conference on Computer and Robot Vision (CRV 2006). Quebec City, Canada (2006)Google Scholar
  18. [18]
    Fleck, S., Busch, F., Straβer, W.: Adaptive probabilistic tracking embedded in smart cameras for distributed surveillance in a 3D model. EURASIP Journal on Embedded Systems, Special Issue on Embedded Vision Systems 2007(29858) (2007)Google Scholar
  19. [19]
    Fleck, S., Loy, R., Vollrath, C., Walter, F., Straβer, W.: SmartClassySurv - a smart camera network for distributed tracking and activity recognition and its application to assisted living. In: ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC-07). Vienna, Austria (2007)Google Scholar
  20. [20]
    Fleck, S., Straβer, W.: Adaptive probabilistic tracking embedded in a smart camera. In: IEEE Embedded Computer Vision Workshop (ECVW) in conjunction with IEEE CVPR 2005. San Diego, CA (2005)Google Scholar
  21. [21]
    Google: Google Earth. [Accessed 1.3.2008] (2008)
  22. [22]
    Gross, R., Sweeney, L., de la Torre, F., Baker, S.: Model-based face de-identification. In: CVPR Workshop on Privacy Research in Vision (CVPRW-PRIV), p. 161. IEEE Computer Society (2006)Google Scholar
  23. [23]
    Hampapur, A., Brown, L.M., Connell, J., Lu, M., Merkl, H., Pankanti, S., Senior, A.W., fe Shu, C., li Tian, Y.: Multi cale tracking for smart video surveillance. IEEE Transactions on Signal Processing 22 (2005)Google Scholar
  24. [24]
    Hauptmann, A.G., Gao, J., Yan, R., Qi, Y., Yang, J., Wactlar, H.D.: Automated analysis of nursing home observations. IEEE Pervasive Computing 3(2), 15–21 (2004). DOI CrossRefGoogle Scholar
  25. [25]
    Hengstler, S., Prashanth, D., Fong, S., Aghajan, H.: Mesheye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: IPSN ’07: Proceedings of the 6th international conference on Information processing in sensor networks, pp. 360–369. ACM, New York, NY, USA (2007). DOI
  26. [26]
    Johannes Widmer, M.G.: Spiegel Online: Die schöone neue Welt der Überwachung.,5532,15385,00.html [Accessed 1.3.2008] (2008)
  27. [27]
    Kampel, M., Aguilera, J., Thirde, D., Borg, M., Fernandez, G., Wildenauer, H., Ferryman, J., Blauensteiner, P.: 3D Object Localisation and Evaluation from Video Streams. In: F. Lenzen, O. Scherzer, M. Vincze (eds.) 28th Workshop of the Austrian Association for Pattern Recognition (AAPR), Digital Imaging and Pattern Recognition, pp. 113–122. Obergurgl, Austria (2006)Google Scholar
  28. [28]
    Keshavarz, A., Maleki-Tabar, A., Aghajan, H.: Distributed vision-based reasoning for smart home care. In: ACM SenSys Workshop on Distributed Smart Cameras (DSC) (2006)Google Scholar
  29. [29]
    Kleihorst, R., Abbo, A., Schueler, B., Danilin, A.: Camera mote with a high-performance parallel processor for real-time frame-based video processing. In: ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC-07) (2007)Google Scholar
  30. [30]
    Philips: Philips Lifeline. [Accessed 1.3.2008] (2008)
  31. [31]
    Prati, A., Mikic, I., Cucchiara, R., Trivedi, M.: Analysis and detection of shadows in video streams: A comparative evaluation. In: IEEE CVPR Workshop on Empirical Evaluation Methods in Computer Vision, Kauai (2001)Google Scholar
  32. [32]
    Quaritsch, M., Kreuzthaler, M., Rinner, B., Bischof, H., Strobl, B.: Autonomous multicamera tracking on embedded smart cameras. EURASIP Journal on Embedded Systems 2007, Article ID 92,827, 10 pages (2007). Doi:10.1155/2007/92827Google Scholar
  33. [33]
    Ribeiro, P.C., Santos-Victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: Workshop on Human Activity Recognition and Modelling, HAREM 2005 (2005)Google Scholar
  34. [34]
    Sangho Park, M.M.T.: Video analysis of vehicles and persons for surveillance. Intelligent and Security Informatics: Techniques and Applications (2007)Google Scholar
  35. [35]
    Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg, K.: Respectful cameras: Detecting visual markers in real-time to address privacy concerns. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  36. [36]
    Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.L., Ekin, A., Connell, J., Shu, C.F., Lu, M.: Enabling video privacy through computer vision. IEEE Security and Privacy 3(3), 50–57 (2005). DOI CrossRefGoogle Scholar
  37. [37]
    Shah, M., Javed, O., Shafique, K.: Automated visual surveillance in realistic scenarios. IEEE MultiMedia 14(1), 30–39 (2007). DOI CrossRefGoogle Scholar
  38. [38]
    Siebel, N., Maybank, S.: The advisor visual surveillance system. In: ECCV 2004 workshop Applications of Computer Vision (ACV) (2004)Google Scholar
  39. [39]
    Staff, S.E.: Integrator unveils security system for Wynn casino. [Accessed 1.3.2008] (2008)
  40. [40]
    Tabar, A.M., Keshavarz, A., Aghajan, H.: Smart home care network using sensor fusion and distributed vision-based reasoning. In: ACM International Workshop on Video Surveillance & Sensor Networks, VSSN 2006 (2006)Google Scholar
  41. [41]
    Toereyin, B.U., Dedeoglu, Y., Cetin, A.E.: HMM based falling person detection using both audio and video. In: MUSCLE Network of Excellence Project (2006)Google Scholar
  42. [42]
    Trivedi, M.M., Gandhi, T.L., Huang, K.S.: Distributed interactive video arrays for event capture and enhanced situational awareness. IEEE Intelligent Systems, Special Issue on Homeland Security (2005)Google Scholar
  43. [43]
    Velalstin, S., Remagnino, P.: Intelligent Distributed Video Surveillance Systems. Institution of Engineering and Technology (2006)Google Scholar
  44. [44]
    Wand, M., Berner, A., Bokeloh, M., Jenke, P., Fleck, A., Hoffmann, M., Maier, B., Staneker, D., Schilling, A., Seidel, H.P.: Processing and interactive editing of huge point clouds from 3D scanners. Computers & Graphics 2008(1) (2008)Google Scholar
  45. [45]
    Weston, J., Elisseeff, A., Bakir, G., Sinz, F.: Spider machine learning framework. [Accessed 1.3.2008] (2008)
  46. [46]
    Williams, A., Xie, D., Ou, S., Grupen, R., Hanson, A., Riseman, E.: Distributed smart cameras for aging in place. In: Workshop on Distributed Smart Cameras, DSC 2006 (2006)Google Scholar
  47. [47]
    Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems. Computer 35(9), 48–53 (2002)CrossRefGoogle Scholar
  48. [48]
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (2006). DOI 10.1145/1177352.1177355. URL

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.SmartSurv Vision Systems GmbHspin-off of University of Tübingen, WSI/GRISGermany
  2. 2.University of Tübingen, WSI/GRISTübingenGermany

Personalised recommendations