Advertisement

Smart Monitoring for Physical Infrastructures

  • Florian Fuchs
  • Michael Berger
  • Claudia Linnhoff-Popien

Abstract

Infrastructures are the backbone of today’s economies. Physical Infrastructures such as transport and energy networks are vital for ensuring the functioning of a society. They are strained by the ever increasing demand for capacity, the need for stronger integration with other infrastructures, and the relentless push for higher cost efficiency.

Keywords

Context Information Description Logic Physical Infrastructure Ambient Intelligence Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2003) The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press New York, NY, USAMATHGoogle Scholar
  2. [2]
    Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL Web Ontology Language Reference. W3C RecommendationGoogle Scholar
  3. [3]
    Cyganiak R (2005) A Relational Algebra for SPARQL. Hpl-2005-170, Digital Media Systems Laboratory, HP Laboratories BristolGoogle Scholar
  4. [4]
    Dey AK (2001) Understanding and using context. Personal and Ubiquitous Computing 5(1):4–7CrossRefGoogle Scholar
  5. [5]
    European Commission, Directorate-General for Research, Sustainable Energy Systems (2007) Strategic Research Agenda for Europe’s Electricity Networks of the Future. EUR 22580Google Scholar
  6. [6]
    European Commission-funded Research Project in FP6 (2005) InteGRail – Intelligent Integration of Railway Systems. http://www.integrail.info/
  7. [7]
    European Rail Research Advisory Council (2007) Strategic rail research agenda 2020Google Scholar
  8. [8]
    Feng J, Smith J, Wu Q, Fitch J (2005) Condition Assessment of Power System Apparatuses Using Ontology Systems. In: Proceedings of Transmission and Distribution Conference, IEEE/PES, Dalian, ChinaGoogle Scholar
  9. [9]
    Fuchs F (2008) Semantische Modellierung und Reasoning für Kontextinformationen in Infrastrukturnetzen (Semantic Modelling and Reasoning for Context Information in Infrastructure Networks). PhD thesis, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  10. [10]
    Fuchs F, Berndl D, Treu G (2007) Towards Entity-centric Wide-area Context Discovery. In: Proceedings of MDM2007, Workshop on Mobile Services-oriented Architectures and Ontologies (MoSO07), IEEE Computer Society, Mannheim, GermanyGoogle Scholar
  11. [11]
    Graefe G (1993) Query Evaluation Techniques for Large Databases. ACM Computing Surveys 25(2):73—169CrossRefGoogle Scholar
  12. [12]
    Horrocks I, Sattler U, Tobies S (2000) Reasoning with Individuals for the Description Logic SHIQ. In: Proceedings of 17th International Conference on Automated Deduction (CADE), Springer-Verlag, London, UK, pp 482–496CrossRefGoogle Scholar
  13. [13]
    Kezunovic M, Ren Z, Latisko G (2005) Automated Monitoring and Analysis of Circuit Breaker Operation. Transactions on Power Delivery 20(3):1910–1918CrossRefGoogle Scholar
  14. [14]
    Kreiss D (2003) Non-operational Data: The Untapped Value of Substation Automation. Utility Automation & Engineering / T & D 8(5)Google Scholar
  15. [15]
    Krummenacher R, Strang T (2007) Ontology-Based Context Modeling. In: Proceedings of Workshop on Context-Aware Proactive SystemsGoogle Scholar
  16. [16]
    Lagnebäck R (2007) Evaluation of Wayside Condition Monitoring Technologies for Condition-based Maintenance of Railway Vehicles. PhD thesis, Luleå University of TechnologyGoogle Scholar
  17. [17]
    Maly T, Rumpler M, Schweinzer H, Schoebel A (2005) New Development of an Overall Train Inspection System for Increased Operational Safety. In: Proceedings of Intelligent Transportation Systems, IEEEGoogle Scholar
  18. [18]
    Mieth S, Fuchs F, Stoffel EP, Weiss D (2008) Reasoning on Geo-Referenced Sensor Data in Infrastructure Networks. In: Proceedings of the 11th International Conference on Geographic Information Science, Workshop on Semantic Web meets Geospatial ApplicationsGoogle Scholar
  19. [19]
    Ollier BD (2006) Intelligent Infrastructure the Business Challenge. In: Proceedings of IET International Conference on Railway Condition Monitoring, IET, Birmingham, UK, pp 1–6CrossRefGoogle Scholar
  20. [20]
    Prud’hommeaux E, Seaborne A (2008) SPARQL Query Language for RDF. W3C Recommendation: http://www.w3.org/TR/rdf-sparql-query/
  21. [21]
    Schröder A, Laresgoiti I, Werlen K, von der Brelie BS, Schnettler A (2007) Intelligent Self-Describing Power Grids. In: Proceedings of the Conference on Electricity Distribution, CIRED, Vienna, AustriaGoogle Scholar
  22. [22]
    Stocker M, Seaborne A (2007) ARQo: The Architecture for an ARQ Static Query Optimizer. Tech. Rep. HPL-2007-92, Digital Media Systems Laboratory, HP Laboratories BristolGoogle Scholar
  23. [23]
    Svatek V (2004) Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In: Proceedings of 7th Conference on Business Information Systems, PoznaňGoogle Scholar
  24. [24]
    Terziyan V, Katasonovic A (2007) Global Understanding Environment: Applying Semantic Web to Industrial Automation. In: Cardoso J, Hepp M, Lytras M (eds) Real-world Applications of Semantic Web Technology and Ontologies, SpringerGoogle Scholar
  25. [25]
    Uslar M (2005) Semantic Interoperability Within the Power Systems Domain. In: Proceedings of the 1st International Workshop on Interoperability of Heterogeneous Information Systems (IHIS), ACM Press, New York, NY, USA, pp 39–46CrossRefGoogle Scholar
  26. [26]
    Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri S (2003) A Review of Process Fault Detection and Diagnosis. Part I: Quantitative Model-based Methods. Computers and Chemical Engineering 27:293–311CrossRefGoogle Scholar
  27. [27]
    Wang H, Zimmermann R, Ku WS (2005) ASPEN: An Adaptive Spatial Peer-to-Peer Network. In: Proceedings of the 13th International Workshop on Geographic Information Systems (GIS), ACM, New York, NY, USA, pp 230–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Siemens AG, Corporate Technology, Intelligent Autonomous Systems / Ludwig-Maximilians-Universität München, Institute for Informatics, Mobile and Distributed Systems GroupMunichGermany
  2. 2.Siemens AG, Corporate TechnologyIntelligent Autonomous SystemsMunichGermany
  3. 3.Ludwig-Maximilians-Universität München, Institute for Informatics, Mobile and Distributed Systems GroupMunichGermany

Personalised recommendations