Synchrony in Neural Networks Underlying Seizure Generation in Human Partial Epilepsies

  • Fabrice Bartolomei
  • Fabrice Wendling
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 2)


Focal (or partial) epilepsies are characterized by recurrent seizures generated in an abnormal region of the brain, the epileptogenic zone (EZ). Approximately 30% of cases are resistant to antiepileptic drugs. In this situation, surgical resection of the EZ is the only therapeutic option able to suppress seizures or, at least, to significantly reduce their frequency. The localization and the definition of the EZ are therefore crucial issues in epileptology and are addressed through detailed analysis of anatomo-functional data acquired in epileptic patients during pre-surgical evaluation. Among investigation methods used during this evaluation, intracerebral exploration remains the only way to directly record the electrophysiological activity (depth-EEG) from brain structures and to formulate hypotheses about their potential involvement in epileptogenic processes. In this context, a large number of studies have been dedicated to the analysis of depth-EEG signals. Based on the estimation of interdependences (i.e., statistical coupling) between signals recorded from distinct sites, some reports have demonstrated that the areas involved in the generation of seizures (defining the EZ) are characterized by synchronous oscillations at seizure onset (Bartolomei et al., 2005b; Bartolomei et al., 2001; Bartolomei et al., 2004b; Bartolomei et al., 1999; Duckrow and Spencer, 1992; Gotman and Levtova, 1996; Le Van Quyen et al., 1998; Lieb et al., 1987). The “synchronization” of activities recorded from brain structures is therefore an important phenomenon that may be used for identifying epileptogenic networks (i.e., promoting the initiation of seizures). Other studies based on nonlinear associations in multivariate signals (Guye et al., 2006) have also reported that long distance functional connectivity is dramatically altered during seizures, or indicated that the topology of networks changes as ictal activity develops (Ponten et al., 2007).


Entorhinal Cortex Seizure Onset Functional Coupling Mesial Temporal Lobe Epilepsy Epileptogenic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alarcon G, Binnie CD, Elwes RD, Polkey CE. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol 1995; 94: 326–37.PubMedCrossRefGoogle Scholar
  2. Ansari-Asl K, Senhadji L, Bellanger JJ, Wendling F. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E Stat Nonlin Soft Matter Phys 2006; 74: 031916.PubMedCrossRefGoogle Scholar
  3. Bancaud J, Angelergues R, Bernouilli C, Bonis A, Bordas-Ferrer M, Bresson M, et al. Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalogr Clin Neurophysiol 1970; 28: 85–6.PubMedCrossRefGoogle Scholar
  4. Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E. Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy. Brain 1994; 117: 71–90.PubMedCrossRefGoogle Scholar
  5. Barbeau E, Wendling F, Regis J, Duncan R, Poncet M, Chauvel P, et al. Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas. Neuropsychologia 2005; 43: 1329–37.PubMedCrossRefGoogle Scholar
  6. Bartolomei F, Barbeau E, Gavaret M, Guye M, McGonigal A, Régis J, et al. Role of the rhinal cortices in déja vu-déjà vécu and reminiscences of memories. Neurology (accepté pour publication) 2004a.Google Scholar
  7. Bartolomei F, Chauvel P, Wendling F. Spatio-temporal dynamics of neuronal networks in partial epilepsy. Rev Neurol (Paris) 2005a; 161: 767–80.CrossRefGoogle Scholar
  8. Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva JP, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia 2005b; 46: 677–87.PubMedCrossRefGoogle Scholar
  9. Bartolomei F, Trebuchon A, Gavaret M, Regis J, Wendling F, Chauvel P. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol 2005c; 116: 2473–9.PubMedCrossRefGoogle Scholar
  10. Bartolomei F, Wendling F, Bellanger J, Regis J, Chauvel P. Neural networks involved in temporal lobe seizures: a nonlinear regression analysis of SEEG signals interdependencies. Clin Neurophysiol 2001; 112: 1746–60.PubMedCrossRefGoogle Scholar
  11. Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P. Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res 2004b; 61: 89–104.PubMedCrossRefGoogle Scholar
  12. Bartolomei F, Wendling F, Vignal JP, Chauvel P, Liegeois-Chauvel C. Neural networks underlying epileptic humming. Epilepsia 2002; 43: 1001–12.PubMedCrossRefGoogle Scholar
  13. Bartolomei F, Wendling F, Vignal J, Kochen S, Bellanger J, Badier J, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol 1999; 110: 1741–54.PubMedCrossRefGoogle Scholar
  14. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia 2001; 42: 967–78.PubMedCrossRefGoogle Scholar
  15. Bettus G, Wendling F, Guye M, Valton L, Regis J, Chauvel P, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 2008.Google Scholar
  16. Blumenfeld H, Rivera M, Vasquez JG, Shah A, Ismail D, Enev M, et al. Neocortical and thalamic spread of amygdala kindled seizures. Epilepsia 2007; 48: 254–62.PubMedCrossRefGoogle Scholar
  17. Brazier MA. Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. Exp Neurol 1972; 36: 263–72.PubMedCrossRefGoogle Scholar
  18. Duckrow R, Spencer S. Regional coherence and the transfer of ictal activity during seizure onset in the medial temporal lobe. Electroencephalogr Clin Neurophysiol 1992; 82: 415–22.PubMedCrossRefGoogle Scholar
  19. Gloor P. Experiential phenomena of temporal lobe epilepsy. Facts and hypotheses. Brain 1990; 113 (Pt 6): 1673–94.PubMedCrossRefGoogle Scholar
  20. Gotman J, Levtova, V. Amygdala-hippocampus relationships in temporal lobe seizures: a phase coherence study. Epilepsy Res 1996; 25: 51–7.PubMedCrossRefGoogle Scholar
  21. Guye M, Regis J, Tamura M, Wendling F, McGonigal A, Chauvel P, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 2006; 129: 1917–28.PubMedCrossRefGoogle Scholar
  22. Halgren E, Chauvel P. Experiential phenomena evoked by human brain electrical stimulation. In: Devinsky O, Beric A and Dugali M, editors. Electrical and Magnetic Stimulation of the Brain and Spinal Cord. New York: Raven Press Ltd, 1993: 123–40.Google Scholar
  23. Le Van Quyen M, Adam C, Baulac M, Martinerie J, Varela F. Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res 1998; 792: 24–40.CrossRefGoogle Scholar
  24. Lieb J, Hoque K, Skomer C, Song X. Interhemispheric propagation of human medial temporal lobe seizures: a coherence/phase analysis. Electroencephalogr Clin Neurophysiol 1987; 67: 101–19.PubMedCrossRefGoogle Scholar
  25. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 2002; 22: 1480–95.PubMedGoogle Scholar
  26. Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys D 2000; 144: 358–69.CrossRefGoogle Scholar
  27. Pijn J, Lopes Da Silva F. Propagation of electrical activity: nonlinear associations and time delays between EEG signals. In: Zschocke and Speckmann, editors. Basic Mechanisms of the EEG. Boston: Birkauser, 1993.Google Scholar
  28. Ponten S, Bartolomei F, Stam C. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 2007; doi:10.1016/j.clinph.2006.12.002.Google Scholar
  29. Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain 2001; 124: 1683–700.PubMedCrossRefGoogle Scholar
  30. Schevon CA, Cappell J, Emerson R, Isler J, Grieve P, Goodman R, et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 2007.Google Scholar
  31. Schindler K, Leung H, Elger CE, Lehnertz K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 2007; 130: 65–77.PubMedCrossRefGoogle Scholar
  32. Spencer S, Guimaraes P, Katz A, Kim J, Spencer D. Morphological patterns of seizures recorded intracranially. Epilepsia 1992; 33: 537–45.PubMedCrossRefGoogle Scholar
  33. Wendling F, Badier J, Chauvel P, Coatrieux J. A method to quantify invariant information in depth-recorded epileptic seizures. Electroencephalogr Clin Neurophysiol 1997; 102: 472–85.PubMedCrossRefGoogle Scholar
  34. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 2003; 126: 1449–59.PubMedCrossRefGoogle Scholar
  35. Wendling F, Bartolomei F, Bellanger J, Chauvel P. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of EEG. Clin Neurophysiol 2001; 112: 1201–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.INSERM, Faculté de Médecine, and Assistance Publique – Hôpitaux de MarseilleHôpital de la Timone, Service de Neurophysiologie Clinique, Aix Marseille Université, U751MarseilleFrance
  2. 2.INSERM, U642, Rennes; Université de Rennes 1, LTSIRennesFrance

Personalised recommendations