The Size of Neuronal Assemblies, Their Frequency of Synchronization, and Their Cognitive Function

Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 2)


In many aspects of cognitive neuroscience it is useful to assume that the main task of cognition is the guidance of action. Cognition evolves in a constantly changing environment in an adaptive and context-dependent way. Cognitive operations are successful if they generate not “correct” representations of external stimuli, but actions that are adapted to the specific situation (von Stein, 1999; Engel et al., 2001). Hence, the human brain is very flexible in its decision to assign a behavioral response to a perceived external stimulus and the same stimulus may elicit one of a variety of motor responses depending on the internal brain state and the behavioral context assigned to the stimulus.


Local Field Potential Volume Conduction Gamma Frequency Alpha Wave Spectral Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Astrid von Stein has contributed substantially to the concepts and our experiments presented in this chapter (Sarnthein, 2005).


  1. Adrian, E.D., Matthews, B.H., 1934. The interpretation of potential waves in the cortex. J Physiol 81, 440–471.PubMedGoogle Scholar
  2. Ahissar, M., Hochstein, S., 2004. The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8, 457–464.PubMedCrossRefGoogle Scholar
  3. Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A., 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871.PubMedCrossRefGoogle Scholar
  4. Babiloni, C., Capotosto, P., Brancucci, A., Percio, C.D., Petrini, L., Buttiglione, M., Cibelli , G., Romani, G.L., Rossini, P.M., Arendt-Nielsen, L., 2008. Cortical alpha rhythms are related to the anticipation of sensorimotor interaction between painful stimuli and movements: a high-resolution EEG study. J Pain 9, 902–911.Google Scholar
  5. Baddeley, A., 1992. Working memory. Science 255, 556–559.PubMedCrossRefGoogle Scholar
  6. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N.K., Panzeri, S., 2008. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28, 5696–5709.PubMedCrossRefGoogle Scholar
  7. Bendat, J.S., Piersol, A.G., 1986. Random Data. Wiley, New York.Google Scholar
  8. Berger, H., 1930. Über das Elektroenkephalogramm des Menschen II. J Psychol Neurol 40, 160–179.Google Scholar
  9. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D., 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17, 2112–2127.PubMedGoogle Scholar
  10. Buschman, T.J., Miller, E.K., 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862.PubMedCrossRefGoogle Scholar
  11. Buzsaki, G., 2006. Rhythms of the Brain. Oxford University Press, New York.CrossRefGoogle Scholar
  12. Douglas, R.J., Martin, K.A., 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci 27, 419–451.PubMedCrossRefGoogle Scholar
  13. Douglas, R.J., Martin, K.A., 2007. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238.PubMedCrossRefGoogle Scholar
  14. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J., 1988. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60, 121–130.PubMedCrossRefGoogle Scholar
  15. Engel, A.K., Fries, P., Singer, W., 2001. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2, 704–716.PubMedCrossRefGoogle Scholar
  16. Engel, A.K., König, P., Gray, C.M., Singer, W., 1990. Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2, 588–606.PubMedCrossRefGoogle Scholar
  17. Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9, 474–480.PubMedCrossRefGoogle Scholar
  18. Ghuman, A.S., Bar, M., Dobbins, I.G., Schnyer, D.M., 2008. The effects of priming on frontal-temporal communication. Proc Natl Acad Sci USA 105, 8405–8409.PubMedCrossRefGoogle Scholar
  19. Girard, P., Hupe, J.M., Bullier, J., 2001. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85, 1328–1331.PubMedGoogle Scholar
  20. Goense, J.B., Logothetis, N.K., 2008. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18, 631–640.PubMedCrossRefGoogle Scholar
  21. Gotman, J., 1983. Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation. Electroencephalogr Clin Neurophysiol 56, 501–514.PubMedCrossRefGoogle Scholar
  22. Gray, C.M., 1999. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24, 31–47, 111–125.PubMedCrossRefGoogle Scholar
  23. Gray, C.M., König, P., Engel, A.K., Singer, W., 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337.PubMedCrossRefGoogle Scholar
  24. Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R., 2001. Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98, 694–699.PubMedCrossRefGoogle Scholar
  25. Hari, R., Salmelin, R., Makela, J.P., Salenius, S., Helle, M., 1997. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26, 51–62.PubMedCrossRefGoogle Scholar
  26. Hughes, S.W., Lorincz, M., Cope, D.W., Blethyn, K.L., Kekesi, K.A., Parri, H.R., Juhasz, G., Crunelli, V., 2004. Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42, 253–268.PubMedCrossRefGoogle Scholar
  27. Jarvis, M.R., Mitra, P.P., 2001. Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13, 717–749.PubMedCrossRefGoogle Scholar
  28. Jensen, O., Gelfand, J., Kounios, J., Lisman, J.E., 2002. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12, 877–882.PubMedCrossRefGoogle Scholar
  29. Juergens, E., Guettler, A., Eckhorn, R., 1999. Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129, 247–259.PubMedCrossRefGoogle Scholar
  30. Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29, 169–195.PubMedCrossRefGoogle Scholar
  31. Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53, 63–88.PubMedCrossRefGoogle Scholar
  32. Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D., 2000. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 97, 1867–1872.PubMedCrossRefGoogle Scholar
  33. Llinas, R., Ribary, U., Contreras, D., Pedroarena, C., 1998. The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353, 1841–1849.PubMedCrossRefGoogle Scholar
  34. Logothetis, N.K., Kayser, C., Oeltermann, A., 2007. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55, 809–823.PubMedCrossRefGoogle Scholar
  35. Lopes da Silva, F.H., von Lierop, T.H.M.T., Schrijer, C.F., Storm van Leeuwen, W., 1973. Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 35, 627–639.CrossRefGoogle Scholar
  36. Michels, L., Moazami-Goudarzi, M., Jeanmonod, D., Sarnthein, J., 2008. EEG alpha distinguishes between cuneal and precuneal activation in working memory. Neuroimage 40, 1296–1310.PubMedCrossRefGoogle Scholar
  37. Moazami-Goudarzi, M., Sarnthein, J., Michels, L., Moukhtieva, R., Jeanmonod, D., 2008. Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients. Neuroimage 41, 985–997.PubMedCrossRefGoogle Scholar
  38. Niedermeyer, E., Lopes da Silva, F.H., 1999. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2nd ed. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  39. Nunez, P.L., 1999. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York.Google Scholar
  40. Nunez, P.L., 2000. Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23, 371–398; discussion 399–437.PubMedCrossRefGoogle Scholar
  41. Nunez, P.L., Reid, L., Bickford, R.G., 1978. The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephalogr Clin Neurophysiol 44, 344–352.PubMedCrossRefGoogle Scholar
  42. Palva, S., Palva, J.M., 2007. New vistas for alpha-frequency band oscillations. Trends Neurosci 30, 150–158.PubMedCrossRefGoogle Scholar
  43. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D., 1994. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18, 49–65.PubMedCrossRefGoogle Scholar
  44. Payne, L., Kounios, J., 2009. Coherent oscillatory networks supporting short-term memory retention. Brain Res Brain Res Rev 1247, 126–132.Google Scholar
  45. Percival, D.B., Walden, A.T., 1993. Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  46. Pfurtscheller, G., Stancak, A., Jr., Neuper, C., 1996. Event-related synchronization (ERS) in the alpha band – an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24, 39–46.PubMedCrossRefGoogle Scholar
  47. Salin, P.A., Bullier, J., 1995. Corticocortical connections in the visual system: structure and function. Physiol Rev 75, 107–154.PubMedGoogle Scholar
  48. Salinsky, M.C., Oken, B.S., Storzbach, D., Dodrill, C.B., 2003. Assessment of CNS effects of antiepileptic drugs by using quantitative EEG measures. Epilepsia 44, 1042–1050.PubMedCrossRefGoogle Scholar
  49. Sarnthein, J., 2005. Astrid von Stein (1961–2002) – obituary. Int J Psychophysiol 57, 79–79.Google Scholar
  50. Sarnthein, J., Jeanmonod, D., 2007. High thalamocortical theta coherence in patients with Parkinson's disease. J Neurosci 27, 124–131.PubMedCrossRefGoogle Scholar
  51. Sarnthein, J., Jeanmonod, D., 2008. High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 39, 1910–1917.PubMedCrossRefGoogle Scholar
  52. Sarnthein, J., Morel, A., von Stein, A., Jeanmonod, D., 2005. Thalamocortical theta coherence in neurological patients at rest and during a working memory task. Int J Psychophysiol 57, 87–96.PubMedCrossRefGoogle Scholar
  53. Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G.L., von Stein, A., 1998. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95, 7092–7096.PubMedCrossRefGoogle Scholar
  54. Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V., Jeanmonod, D., 2006. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129, 55–64.PubMedCrossRefGoogle Scholar
  55. Sauseng, P., Klimesch, W., 2008. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32, 1001–1013.PubMedCrossRefGoogle Scholar
  56. Sauseng, P., Klimesch, W., Doppelmayr, M., Hanslmayr, S., Schabus, M., Gruber, W.R., 2004. Theta coupling in the human electroencephalogram during a working memory task. Neurosci Lett 354, 123–126.PubMedCrossRefGoogle Scholar
  57. Sauseng, P., Klimesch, W., Gruber, W.R., Birbaumer, N., 2008. Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40, 308–317.PubMedCrossRefGoogle Scholar
  58. Schadow, J., Lenz, D., Thaerig, S., Busch, N.A., Frund, I., Herrmann, C.S., 2007a. Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG. Int J Psychophysiol 65, 152–161.PubMedCrossRefGoogle Scholar
  59. Schadow, J., Lenz, D., Thaerig, S., Busch, N.A., Frund, I., Rieger, J.W., Herrmann, C.S., 2007b. Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66, 28–36.PubMedCrossRefGoogle Scholar
  60. Scherg, M., Berg, P., 1996. New concepts of brain source imaging and localization. Electroencephalogr Clin Neurophysiol Suppl 46, 127–137.PubMedGoogle Scholar
  61. Schürmann, M., Demiralp, T., Basar, E., Basar-Eroglu, C., 2000. Electroencephalogram alpha (8–15 Hz) responses to visual stimuli in cat cortex, thalamus, and hippocampus: a distributed alpha network? Neurosci Lett 292, 175–178.PubMedCrossRefGoogle Scholar
  62. Senkowski, D., Molholm, S., Gomez-Ramirez, M., Foxe, J.J., 2006. Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study. Cereb Cortex 16, 1556–1565.PubMedCrossRefGoogle Scholar
  63. Singer, W., Gray, C.M., 1995. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18, 555–586.PubMedCrossRefGoogle Scholar
  64. Stoffers, D., Bosboom, J.L., Deijen, J.B., Wolters, E.C., Berendse, H.W., Stam, C.J., 2007. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia. Brain 130, 1847–1860.PubMedCrossRefGoogle Scholar
  65. van Dijk, H., Schoffelen, J.M., Oostenveld, R., Jensen, O., 2008. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28, 1816–1823.PubMedCrossRefGoogle Scholar
  66. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2, 229–239.PubMedCrossRefGoogle Scholar
  67. von Stein, A., 1999. Does the brain represent the world? Evidence against the mapping assumption. In: Riegler, A., Peschl, M., von Stein, A. (Eds.), Understanding Representation in the Cognitive Sciences. Kluwer, New York, pp. 161–167.Google Scholar
  68. von Stein, A., Chiang, C., König, P., 2000. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97, 14748–14753.CrossRefGoogle Scholar
  69. von Stein, A., Rappelsberger, P., Sarnthein, J., Petsche, H., 1999. Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9, 137–150.CrossRefGoogle Scholar
  70. von Stein, A., Sarnthein, J., 2000. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38, 301–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Neurochirurgie, Universitäts Spital ZürichZürichSwitzerland
  2. 2.Neurochirurgie, Universitäts Spital ZürichZürichSwitzerland

Personalised recommendations