Skip to main content

From Synchronisation to Networks: Assessment of Functional Connectivity in the Brain

  • Chapter
  • First Online:
Coordinated Activity in the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 2))

Abstract

There is increasing evidence from basic research that statistical correlations between electroencephalographic (EEG) and magnetoencephalographic (MEG) rhythms recorded from different brain areas, either ‘at rest’ or during a specific task, contain a wealth of information on functional interactions between brain regions (Buzsaki, 2006; Varela et al., 2001). In fact, synchronisation of oscillatory brain activity in various frequency bands may be one of the key mechanisms used by the brain to integrate information processed in multiple specialised local brain areas. Many new signal analysis tools have become available in recent years to study such synchronisation patterns and their disruption in various neurological and neuropsychiatric diseases. The study of functional interaction patterns in the brain is even beginning to show some remarkable similarities between the brain and other complex networks, such as the Internet (Reijneveld et al., 2007). In this chapter, we give a brief introduction of concepts underlying functional connectivity and network analysis in EEG and MEG, the major tools that are used, their methodological aspects and shortcomings and the application to neurological disorders. The introduction is focused on presenting the concepts and ideas behind the methods; for technical details, we refer to more extensive review papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PloS Comput Biol 3: e17.

    Article  PubMed  Google Scholar 

  • Aertsen AMHJ, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of ‘effective connectivity’. J Neurophysiol 61: 900–917.

    PubMed  CAS  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Modern Phys 74: 47–97.

    Article  Google Scholar 

  • Amaral LAN, Ottino JM (2004) Complex networks. Augmenting the framework for the study of complex systems. Eur Phys J B 38: 147–162.

    Article  CAS  Google Scholar 

  • Ansari-Asl K, Senhadji L, Bellanger J-J, Wendling F (2006) Quantitative evaluation of linear an nonlinear methods characterizing interdependencies between brain signals. Phys Rev E 74: 031916.

    Article  Google Scholar 

  • Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Marciani MG, Bufalari S, Salinari S, Colosmimo A, Ding L, Edgar JC, Heller W, Miller GA, He B, Babiloni F (2007) Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology 44: doi: 10.1111/j.1469-8986.2007.00556.x.

    Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512.

    Article  PubMed  Google Scholar 

  • Barrat A, Bathelemy M, Pastor-Satorras R, Vespignani A (2005) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101: 3747–3752.

    Article  Google Scholar 

  • Barthelemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Characterization and modelling of weighted networks. Phys A 346: 34–43.

    Article  Google Scholar 

  • Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, van Dijk BW, de Munck JC, de Jongh A, Cover KS, Stam CJ (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117: 2039–2049.

    Article  PubMed  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12: 512–523.

    Article  PubMed  Google Scholar 

  • Bassett DS, Meyer-Linderberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci 103: 19518–19523.

    Article  PubMed  CAS  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366: 1–101.

    Article  CAS  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424: 175–308.

    Article  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Cecchi GA, Rao AR, Centeno MV, Baliki M, Apkarian AV, Chialvo DR (2007) Identifying directed links in large scale functional networks: application to brain fMRI. BMC Cell Biol 8(Suppl I): S5 doi: 10.1186/1471-2121-8-S1-S5.

    Google Scholar 

  • Chavez M, Martinerie J, Le van Quyen M (2003) Statistical assessment of nonlinear causality: application to epileptic EEG signals. J Neurosci Methods 124: 113–128.

    Article  PubMed  Google Scholar 

  • Cohen R, Havlin S (2003) Scale-free networks are ultrasmall. Phys Rev Lett 90: art 058701.

    Article  Google Scholar 

  • David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21: 659–673.

    Article  PubMed  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Tocci A, Marciani MG, Colosimo A, Salinari S, Gao S, Cichocki A, Babiloni F (2007a). Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: a theoretical graph approach. Brain Topogr 19: 125–136.

    Article  PubMed  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007b). Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28(12): 1334–1346.

    Article  PubMed  Google Scholar 

  • Dodel S, Hermann JM, Geisel T (2002) Functional connectivity by cross-correlation clustering. Neurocomputing 44–46: 1065–1070.

    Article  Google Scholar 

  • Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, Vincet JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104: 11073–11078.

    Article  PubMed  CAS  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94: 018102.

    Article  PubMed  Google Scholar 

  • Erdos P, Renyi A (1960) On the evolution of random graphs. Publi Math Inst Hung Acad Sci 12: 17–61.

    Google Scholar 

  • Ferri R, Rundo F, Bruni O, Terzano MG, Stam CJ (2007) Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol 118: 449–456.

    Article  PubMed  Google Scholar 

  • Ferri R, Rundo F, Terzano MG, Stam CJ (2008) The functional connectivity of different EEG bands moves towards small-world network organization during sleep. Clin Neurophysiol doi: 10.1016/j.clinph.2008.04.294.

    Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98: 694–699.

    Article  PubMed  CAS  Google Scholar 

  • Guevara R, Perez Velazquez JL, Nenadovic V, Wennberg R, Senjanovic G, Dominguez LG (2005) Phase synchronization measurements using electroencephalographic recordings. What can we really say about neuronal synchrony? Neuroinformatics 3: 301–313.

    Google Scholar 

  • Hadjipapas A, Hillebrand A, Holliday IE, Singh K, Barnes G (2005) Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept. Clin Neurophysiol 116: 1300–1313.

    Article  PubMed  Google Scholar 

  • Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen J van, Meuli R, Thiran J-P (2007) Mapping human whole-brain structural networks with diffusion MRI. PloS ONE 2: e597.

    Article  PubMed  Google Scholar 

  • He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10): 2407–2419.

    Article  PubMed  Google Scholar 

  • He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28: 4756–4766.

    Article  PubMed  CAS  Google Scholar 

  • Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free network. Proc R Soc B 273: 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonica network equivalence. PloS ONE 3: e0002051.

    Article  PubMed  Google Scholar 

  • Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, Valdes-Hernandez PA, Martinez-Montes E, Aleman-Gomez Y, Sanchez-Bornot JM (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 36: 645–660.

    Article  PubMed  CAS  Google Scholar 

  • Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115: 1490–1505.

    Article  PubMed  Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701.

    Article  PubMed  CAS  Google Scholar 

  • Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys 32: 249–263.

    Article  CAS  Google Scholar 

  • Lee L, Harrison LM, Mechelli A (2003) A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 19: 457–465.

    Google Scholar 

  • Lehmann D, Faber PL, Gianotti LRR, Kochi K, Pascual-Marqui RD (2006) Coherence and phase locking in the scalp Eeg and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. J Physiol Paris 99(1): 29–36.

    Article  PubMed  Google Scholar 

  • Lehnertz K, Elger CE (1998) Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys Rev Lett 80: 5019–5022.

    Article  CAS  Google Scholar 

  • Liu Y, Zhou Y, He Y, Hao Y, Song M, Yu Ch, Liu H, Kiu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131: 945–961.

    Article  PubMed  Google Scholar 

  • Martinerie J, Adam C, Quyen M Le Van, Baulac M, Clemenceau S, Renault B, Varela FJ (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4: 1173–1176.

    Article  PubMed  CAS  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006a) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006b). Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87: 60–66.

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, Stam CJ (2009) The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapp 30: 200–208.

    Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 2: 60–67.

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Montez T, Linkenkaer-Hansen K, van Dijk BW, Stam CJ (2006) Synchronization likelihood with explicit time-frequency priors. Neuroimage 33: 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  • Netoff TI, Clewley R, Arno S, White JA (2004) Epilepsy in small-world networks. J Neurosci 24: 8075–8083.

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45: 167–256.

    Article  Google Scholar 

  • Nolte G, Wheaton OBL, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115: 2292–2307.

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroen Clin Neurol 103: 499–515.

    Google Scholar 

  • Percha B, Dzakpasu R, Zochowski M (2005) Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E 72: 031909.

    Article  Google Scholar 

  • Pereda E, Quian Quiroga R, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology 77: 1–37.

    Article  PubMed  Google Scholar 

  • Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial lobe seizures. Clin Neurophysiol 118: 918–927.

    Article  PubMed  CAS  Google Scholar 

  • Quian Quiroga R, Kraskov A, Kreuz T, Grassberger G (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E Stat Nonlin Soft Matter Phys 65(4 Pt 1): 041903.

    Article  PubMed  CAS  Google Scholar 

  • Ramasco JJ, Goncalves B (2007) Transport on weighted networks: when the correlation are independent of the degree. Phys Rev E 76: 066106.

    Article  Google Scholar 

  • Ray C, Ruffini G, Marco-Pallarex J, Fuentemilla L, Grau C (2007) Complex networks in brain electrical activity. Europhys Lett 79: 38004.

    Article  Google Scholar 

  • Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118: 2317–2331.

    Article  PubMed  Google Scholar 

  • Rodriguez E, George N, Lachauz JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397: 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76: 1804–1807.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2001) Detecting direction of coupling in interacting oscillators. Phys Rev E 64: 045202.

    Article  CAS  Google Scholar 

  • Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2007) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp in press.

    Google Scholar 

  • Rulkov NF, Sushchik MM, Ysimring LS, Abarbanel HDI (1995) Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E 51: 980–994.

    Article  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005a) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15: 1332–1342.

    Article  PubMed  Google Scholar 

  • Salvador R, Suckling J, Schwarzbauer Ch, Bullmore E (2005b) Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Phil Trans R Soc B 360: 937–946.

    Article  PubMed  Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95: 7092–7096.

    Article  PubMed  CAS  Google Scholar 

  • Schindler K, Leung H, Elger CE, Lehnertz K (2007) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130: 65–77.

    Article  PubMed  Google Scholar 

  • Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N, Greenstein D, Lerch JP, Kendler KS, Neale MC, Giedd JN (2008) Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex doi:10.1093/cercor/bhm211.

    Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6: 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Smit DJ, Stam CJ, Posthuma D, Boomsma DI, de Geus EJ (2007) Heritability of ‘small-world’ networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp [Epub ahead of print].

    Google Scholar 

  • Solomonov R, Rapoport A (1951) Connectivity of random nets. Bull Math Biophys 13: 107–117.

    Article  Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2: 145–162.

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ (2006) Small world inside big brains. Proc Natl Acad Sci 51: 19219–19220.

    Article  Google Scholar 

  • Srinivas KV, Jain R, Saurav S, Sikdar SK (2007) Small-word network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 25: 3276–3286.

    Article  PubMed  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355: 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116: 2266–2301.

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ (2006) Nonlinear brain dynamics. Nova Science, New York.

    Google Scholar 

  • Stam CJ, van Dijk BW (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Phys D 163: 236–241.

    Article  Google Scholar 

  • Stam CJ, van Cappellen van Walsum AM, Micheloyannis S (2002) Variability of EEG synchronization during a working memory task in healthy subjects. Int J Psychophysiol 46: 53–66.

    Article  PubMed  Google Scholar 

  • Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW (2003) Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects. Hum Brain Mapp 19: 63–78.

    Article  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JPA, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32: 1335–1344.

    Article  PubMed  CAS  Google Scholar 

  • Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlin Biomed Phys 1: 3.

    Article  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007a) Phase lag index: assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28: 1178–1193.

    Article  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens PH (2007b). Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17: 92–99.

    Article  PubMed  CAS  Google Scholar 

  • Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355: 111–126.

    Article  CAS  Google Scholar 

  • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32: 129–144.

    Article  PubMed  Google Scholar 

  • Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D 143: 1–20.

    Article  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2008) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp [Epub ahead of print].

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Li X, Guan X (2006) Networking property during epileptic seizure with multi-channel EEG recordings. J. Wang et al. (Eds.): ISNN 2006, Lecture Notes Computer Science 3976, pp. 573–578.

    Google Scholar 

  • Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Li K, Chan P (2007) Aging influence on functional connectivity of the motor network in the resting state. Neurosci Lett 442: 164–168.

    Article  Google Scholar 

  • Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex [Epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. Stam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stam, C.J. (2009). From Synchronisation to Networks: Assessment of Functional Connectivity in the Brain. In: Velazquez, J., Wennberg, R. (eds) Coordinated Activity in the Brain. Springer Series in Computational Neuroscience, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93797-7_5

Download citation

Publish with us

Policies and ethics