Advertisement

Approaches to the Detection of Direct Directed Interactions in Neuronal Networks

  • Ariane Schad
  • Jakob Nawrath
  • Michael Jachan
  • Kathrin Henschel
  • Linda Spindeler
  • Jens Timmer
  • Björn Schelter
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 2)

Abstact

In this chapter, we address the challenge of detecting interactions among neuronal processes by means of bivariate and multivariate linear analysis techniques. For linear systems, both undirected and directed measures exist. Coherence is a commonly used undirected bivariate measure to detect the interaction between two nodes of a network, while multivariate measures like the partial coherence distinguish direct and indirect connections. The partial directed coherence additionally features the direction influences between nodes. We introduce the theoretical framework of these analysis techniques, discuss their estimation, and present their application to simulated and real-world data.

Keywords

Coupling Scheme Multivariate Time Series Multivariate System Coherence Analysis Nonlinear Stochastic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Special thanks goes to Bernhard Hellwig, Florian Amtage, and Professor Carl Hermann Lücking who provided us not only with the tremor data but also with knowledge about the neurophysiology of Parkinsonian tremor. This work was supported by the German Science Foundation (Ti315/2-1) and by the German Federal Ministry of Education and Research (BMBF grant 01GQ0420).

References

  1. H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Contr., AC-19:716–723, 1974.CrossRefGoogle Scholar
  2. L. A. Baccalá and K. Sameshima. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern., 84:463–474, 2001.PubMedCrossRefGoogle Scholar
  3. P. Bloomfield. Fourier Analysis of Time Series: An Introduction. John Wiley & Sons, New York, 1976.Google Scholar
  4. D. R. Brillinger. Time Series: Data Analysis and Theory. Holden-Day, San Francisco, 1981.Google Scholar
  5. P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, New York, 1998.Google Scholar
  6. R. Dahlhaus. Graphical interaction models for multivariate time series. Metrika, 51:157–172, 2000.CrossRefGoogle Scholar
  7. R. Dahlhaus and M. Eichler. Causality and graphical models for time series. In P. Green, N. Hjort, and S. Richardson, editors, Highly Structured Stochastic Systems, pp. 115–137. Oxford University Press, Oxford, 2003.Google Scholar
  8. M. Eichler. A graphical approach for evaluating effective connectivity in neural systems. Phil. Trans. R. Soc. B, 360:953–967, 2005.PubMedCrossRefGoogle Scholar
  9. M. Eichler. Graphical modeling of dynamic relationships in multivariate time series. In B. Schelter, M. Winterhalder, and J. Timmer, editors, Handbook of Time Series Analysis, Chapter 14, pp. 335–372. Wiley-Vch, Weinheim, 2006.Google Scholar
  10. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37:424–438, 1969.CrossRefGoogle Scholar
  11. E. J. Hannan. Multiple Time Series. Handbook of Statistics. Wiley, New York, 1970.CrossRefGoogle Scholar
  12. E. L. Lehmann. Testing Statistical Hypotheses. Springer, New York, 1997.Google Scholar
  13. H. Lütkepohl. Introduction to Multiple Time Series Analysis. Springer, Berlin 1993.CrossRefGoogle Scholar
  14. A. Neumaier and T. Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw., 27:27–57, 2001.CrossRefGoogle Scholar
  15. M. B. Priestley. Spectral Analysis and Time Series. Academic Press, London, 1989.Google Scholar
  16. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, and J. Timmer. Partial phase synchronization for multivariate synchronizing systems. Phys. Rev. Lett., 96:208103, 2006a.Google Scholar
  17. B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C. H. Lücking, R. Dahlhaus, and J. Timmer. Testing for directed influences among neural signals using partial directed coherence. J. Neurosci. Methods, 152:210–219, April 2006b.PubMedCrossRefGoogle Scholar
  18. B. Schelter, M. Winterhalder, B. Hellwig, B. Guschlbauer, C. H. Lücking, and J. Timmer. Direct or indirect? Graphical models for neural oscillators. J. Physiol. Paris, 99:37–46, January 2006c.PubMedCrossRefGoogle Scholar
  19. B. Schelter, M. Winterhalder, J. Kurths, and J. Timmer. Phase synchronization and coherence analysis: Sensitivity and specificity. Int. J. Bif. Chaos, 17:3551–3556, 2007.CrossRefGoogle Scholar
  20. T. Schneider and A. Neumaier. Algorithm 808: ARfit – A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw., 27:58–65, 2001.CrossRefGoogle Scholar
  21. J. Timmer, M. Lauk, S. Häuβler, V. Radt, B. Köster, B. Hellwig, B. Guschlbauer, C. H. Lücking, M. Eichler, and G. Deuschl. Cross-spectral analysis of tremor time series. Int. J. Bif. Chaos, 10:2595–2610, 2000.Google Scholar
  22. M. Winterhalder, B. Schelter, W. Hesse, K. Schwab, L. Leistritz, D. Klan, R. Bauer, J. Timmer, and H. Witte. Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Sig. Proc., 85:2137–2160, 2005.CrossRefGoogle Scholar
  23. M. Winterhalder, B. Schelter, J. Kurths, A. Schulze-Bonhage, and J. Timmer. Sensitivity and specificity of coherence and phase synchronization analysis. Phys. Lett. A, 356:26–34, 2006.CrossRefGoogle Scholar
  24. M. Winterhalder, B. Schelter, and J. Timmer. Detecting coupling directions in multivariate oscillatory systems. Int. J. Bif. Chaos, 17:3735–3739, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ariane Schad
    • 1
  • Jakob Nawrath
    • 1
  • Michael Jachan
    • 1
  • Kathrin Henschel
    • 1
  • Linda Spindeler
    • 1
  • Jens Timmer
    • 1
  • Björn Schelter
    • 1
  1. 1.FDM, Freiburg Center for Data Analysis and ModelingUniversity of Freiburg, Eckerstr. 1FreiburgGermany

Personalised recommendations