Advertisement

Complex Network Modeling: A New Approach to Neurosciences

  • Yamir Moreno
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 2)

Abstact

Recently, many seemingly diverse systems have been found to share unique structural properties that in their turn greatly influence the dynamical features and function of these systems. In this chapter, we focus on recent discoveries about the structure and function of complex networks to show how emergent properties in neuronal systems can be studied using the tools developed in the last several years. We first introduce basic notions to understand what a complex network is and how one can characterize its topology. Next, we discuss some topological properties recently revealed in the literature and their connections to the structural properties of other complex networks found in many fields of science. The second part of this chapter is devoted to revise the relationship between the structural properties of brain-like systems and their dynamical behavior. In particular, we pay attention to synchronization phenomena, quite relevant in many contexts of neurosciences. We round off the chapter by outlining some perspectives and discussing future and promising lines of research.

Keywords

Degree Distribution Cluster Coefficient Brain Network Real World Network Detailed Balance Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to my collaborators on the subjects discussed here and would also like to thank A. Arenas, S. Boccaletti, A. Díaz-Guilera, L. M. Floria, J. Gómez-Gardeñes, and V. Latora for many helpful discussions on the structure and dynamics of complex networks during the last several years. The author is supported by MEC through the Ramón y Cajal Program. This work has been partially supported by the Spanish DGICYT Projects FIS2006-12781-C02-01 and FIS2005-00337 and by the European NEST Pathfinder project GABA under contract 043309.

References

  1. J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort, and R. Spigler. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).Google Scholar
  2. R. D. Alba. A graph-theoretic definition of a sociometric clique. J. Math. Social. 3, 113 (1973).Google Scholar
  3. T. Binzegger, R. J. Douglas, and K. A. C. Martin. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441 (2004).PubMedCrossRefGoogle Scholar
  4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex Networks: Structure and Dynamics. Phys. Rep. 424, 175 (2006).CrossRefGoogle Scholar
  5. M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Epidemic spreading in complex nets with degree correlations. Lect. Notes Phys. 625, 127 (2003).CrossRefGoogle Scholar
  6. B. Bollobás, Modern Graph Theory (Graduate Texts in Mathematics, Springer-Verlag, New York, 1998).CrossRefGoogle Scholar
  7. S. P. Borgatti, M. G. Everett, and P. R. Shirey. LS sets, lambda sets and other cohesive subsets. Social Networks 12, 337 (1990).CrossRefGoogle Scholar
  8. V. Braitenberg and A. Schüz, Cortex: Statistics and Geometry of Neuronal Connectivity (Springer-Verlag, Heidelberg, Germany, 2nd ed., 1998).CrossRefGoogle Scholar
  9. G. Buzsáki and J. J. Chrobak. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504 (1995).PubMedCrossRefGoogle Scholar
  10. G. Buzsáki, C. Geisler, D. A. Henze, and X. J. Wang. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186 (2004).PubMedCrossRefGoogle Scholar
  11. D. B. Chklovskii, T. Schikorski, and C. F. Stevens. Wiring optimization in cortical circuits. Neuron 34, 341 (2002).PubMedCrossRefGoogle Scholar
  12. F. L. da Silva, A. Hoek, H. Smith, and L. Zetterberg. Model of brain rythmic activity. Kybernetik 15, 27 (1974).CrossRefGoogle Scholar
  13. L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing community structure identification. J. Stat. Mech. P09008 (2005).Google Scholar
  14. V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and V. V. Apkarian. Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005).PubMedCrossRefGoogle Scholar
  15. G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee. Self-organization and identification of Web communities. IEEE Comput. 35, 66 (2002).CrossRefGoogle Scholar
  16. C. L. Freeman. A set of measures of centrality based on betweenness. Sociometry 40, 35 (1977).CrossRefGoogle Scholar
  17. L. C. Freeman. Centrality in social networks: I. Conceptual clarification. Social Networks 1, 215 (1979).CrossRefGoogle Scholar
  18. P. Fries. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474 (2005).PubMedCrossRefGoogle Scholar
  19. J. Gómez-Gardeñes, Y. Moreno, and A. Arenas. Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007a).PubMedCrossRefGoogle Scholar
  20. J. Gómez-Gardeñes, Y. Moreno, and A. Arenas. Synchronizability determined by coupling strengths and topology on Complex Networks. Phys. Rev. E 75, 066106 (2007b).CrossRefGoogle Scholar
  21. C. Hilgetag and M. Kaiser. Clustered organization of cortical connectivity. Neuroinformatics 2, 353 (2004).PubMedCrossRefGoogle Scholar
  22. A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952).PubMedGoogle Scholar
  23. H. Hong, M. Y. Choi, and B. J. Kim. Synchronization on small-world networks. Phys. Rev. E 65, 026139 (2002).CrossRefGoogle Scholar
  24. M. Kaiser and C. C. Hilgetag. Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems. PloS Comput. Biol. 2, 95 (2006).CrossRefGoogle Scholar
  25. J. Karbowski. Optimal wiring principle and plateaus in the degree of separation for cortical neurons. Phys. Rev. Lett. 86, 3674 (2001).PubMedCrossRefGoogle Scholar
  26. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20, 1746 (2004).PubMedCrossRefGoogle Scholar
  27. P. Konig, A. K. Engel, and W. Singer. Integrator or coincidence detector? the role of the cortical neuron revisited. Trends Neurosci. 19, 130 (1996).PubMedCrossRefGoogle Scholar
  28. Y. Kuramoto. Self-entrainment of a population of coupled nonlinear oscillators. Lect. Notes Phys. 30, 420 (1975).CrossRefGoogle Scholar
  29. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, New York, 1984).CrossRefGoogle Scholar
  30. L. F. Lago-Fernández, R. Huerta, F. Corbacho, and J. A. Sigüenza. Fast Response and Temporal Coherent Oscillations in Small-World Networks. Phys. Rev. Lett. 84, 2758 (2000).PubMedCrossRefGoogle Scholar
  31. V. Latora and M. Marchiori. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87, 198701 (2001).PubMedCrossRefGoogle Scholar
  32. V. Latora and M. Marchiori. Economic Small-World Behavior in Weighted Networks. Eur. Phys. J. B32, 249 (2003).Google Scholar
  33. V. Latora and M. Marchiori. A measure of centrality based on the network efficiency. Preprint cond-mat/0402050.Google Scholar
  34. S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100, 11980 (2003).PubMedCrossRefGoogle Scholar
  35. M. Marchiori and V. Latora. Harmony in the small-world. Physica A285, 539 (2000).Google Scholar
  36. H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793 (2004).PubMedCrossRefGoogle Scholar
  37. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon. Superfamilies of Evolved and Designed Networks. Science 303, 1538 (2004).PubMedCrossRefGoogle Scholar
  38. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashan, D. Chklovskii, and U. Alon. Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824 (2002).PubMedCrossRefGoogle Scholar
  39. Y. Moreno and A. F. Pacheco. Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68, 603 (2004).CrossRefGoogle Scholar
  40. Y. Moreno, M. Vázquez-Prada, and A. F. Pacheco. Fitness for synchronization of network motifs. Physica A 343, 279 (2004).CrossRefGoogle Scholar
  41. R. J. Morgan and I Soltesz. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad. Sci. USA 105, 6179 (2008).PubMedCrossRefGoogle Scholar
  42. M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).PubMedCrossRefGoogle Scholar
  43. M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E67, 026126 (2003a).Google Scholar
  44. M. E. J. Newman. The structure and function of complex networks. SIAM Rev. 45, 167 (2003b).CrossRefGoogle Scholar
  45. R. Pastor-Satorras, A. Vázquez, and A. Vespignani. Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001).PubMedCrossRefGoogle Scholar
  46. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
  47. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658 (2004).PubMedCrossRefGoogle Scholar
  48. A. Roxin, H. Riecke, and S. A. Solla. Self-Sustained Activity in a Small-World Network of Excitable Neurons. Phyas. Rev. Lett. 92, 198101 (2004).CrossRefGoogle Scholar
  49. J. Scannell, G. Burns, C. Hilgetag, M. ONeil, and M. Young. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277 (1999).PubMedCrossRefGoogle Scholar
  50. J. Scott, Social Network Analysis: A Handbook (Sage Publications, London, 2nd ed., 2000).Google Scholar
  51. S. B. Seidman. Internal cohesion of LS sets in graphs. Social Networks 5, 97 (1983).CrossRefGoogle Scholar
  52. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Motifs in the transcriptional regulation network of E. coli. Nat. Genet. 31, 64 (2002).PubMedCrossRefGoogle Scholar
  53. A. Sik, M. Penttonen, A. Ylinen, and G. Buzsaki. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651 (1995).PubMedGoogle Scholar
  54. A. Sik, A. Ylinen, M. Penttonen, and G. Buzsáki. Inhibitory ca1-ca3-hilar region feedback in the hippocampus. Science 265, 1722 (1994).PubMedCrossRefGoogle Scholar
  55. G. Silberberg, S. Grillner, F. E. Lebeau, R. Maex, and H. Markram. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541 (2005).PubMedCrossRefGoogle Scholar
  56. S. Wasserman and K. Faust, Social Networks Analysis (Cambridge University Press, Cambridge, 1994).Google Scholar
  57. D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, NJ, 1999).Google Scholar
  58. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature 393, 440 (1998).PubMedCrossRefGoogle Scholar
  59. L. Zemanová, C. Zhou, and J. Kurths. Structural and functional clusters of complex brain networks. Physica D 224, 202 (2006).CrossRefGoogle Scholar
  60. C. Zhou and J. Kurths. Dynamical Weights and Enhanced Synchronization in Adaptive Complex Networks. Phys. Rev. Lett. 96, 164102 (2006).PubMedCrossRefGoogle Scholar
  61. C. Zhou, A. E. Motter, and J. Kurths. Universality in the Synchronization of Weighted Random Networks. Phys. Rev. Lett. 96, 034101 (2006).PubMedCrossRefGoogle Scholar
  62. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006).PubMedCrossRefGoogle Scholar
  63. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths. Structure function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 9, 178 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Theoretical PhysicsUniversity of ZaragozaZaragozaSpain

Personalised recommendations