Advertisement

Polymerizable Hydrogels for Rapid Prototyping: Chemistry, Photolithography, and Mechanical Properties

  • Jurgen Stampfl
  • Robert Liska
Chapter

Abstract

Hydrogels are cross-linked polymeric structures which are swollen by water [1, 2]. In a more general sense, these polymeric structures can contain solvents other than water, leading to the more general term “gel.” Besides the polymer network and solvents, hydrogels can also contain particulate filler materials, typically ceramic particles. The functional and structural properties of hydrogels can be tailored quite easily, as the network density as well as the solvent content can be varied over a large range. The mechanical properties (especially the stiffness) of hydro(gels) are comparable to many biological tissues. Furthermore, the open network in combination with the mobile solvent molecules facilitates the diffusion of nutrients and dissolved gases, which makes hydrogels a widely used material in biomedicine, e.g. for the use in contact lenses [3], wound-healing bioadhesives, scaffolds for tissue engineering [4], and pharmaceutical hydrogel systems. Hydrogels are also used in a number of sensor applications, as the swelling behavior and diffusion coefficient of hydrogels depend on the ambient conditions [5].

Keywords

Rapid Prototype Spherical Indenter Cartilage Sample Reactive Diluent Indentation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.D. Ratner, F.J. Schoen, J.E. Lemons, Biomaterials science: An introduction to materials in medicine, Chapter 2 Classes of materials used in medicine, Elsevier Academic Press, New York, 1996.Google Scholar
  2. 2.
    N.A. Peppas, Hydrogels in medicine and pharmacy, CRC Press, Boca Raton, 1987.Google Scholar
  3. 3.
    N.A. Peppas, W.H.M. Yang, Properties-based optimization of the structure of polymers for contact lens applications, Contact Intraocular Lens Medical Journal 7, (1981) 300–321.Google Scholar
  4. 4.
    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell 126 (4), (2006) 677–689.CrossRefGoogle Scholar
  5. 5.
    Q.T. Trinh, G. Gerlach, J. Sorber, K.-F. Arndt, Hydrogel-based piezoresistive pH sensors: Design, simulation and output characteristics, Sensors and Actuators B: Chemical 117 (1), (2006) 17–26.CrossRefGoogle Scholar
  6. 6.
    N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Advanced Materials 18, (2006) 1345–1360.CrossRefGoogle Scholar
  7. 7.
    S.J. Bryant, K.S. Anseth, Photopolymerization of hydrogel scaffolds, in: P.X. Ma and J.Elisseeff (eds.) Scaffolding in tissue engineering, Dekker, New York, 2005.Google Scholar
  8. 8.
    M.H. Luxner, J. Stampfl, H.E. Pettermann, Numerical simulations of 3D open cell structures – Influence of structural irregularities on elasto-plasticity and deformation localization, International Journal of Solids and Structures 44, (2007) 2990–3003.CrossRefMATHGoogle Scholar
  9. 9.
    K.L. Spiller, S.J. Laurencin, D. Charlton, S.A. Maher, A.M. Lowman, Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties, Acta Biomaterialia 4, (2008) 17–25.CrossRefGoogle Scholar
  10. 10.
    C.G. Armstrong, V.C. Mow, Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content, The Journal of Bone and Joint Surgery 64A, (1982) 88–91.Google Scholar
  11. 11.
    G.E. Kempson, H. Muir, S.A. Swanson, M.A.R. Freeman, Correlations between stiffness and chemical constituents of cartilage on the human femoral head, Biochimica et biophysica acta 215, (1970) 70–77.Google Scholar
  12. 12.
    S. Gäbler, Viskoelastische eigenschaften von hydrogelen, Diploma thesis, Friedrich Schiller Universität Jena, 2008.Google Scholar
  13. 13.
    W.C. Hayes, L.M. Keer, G. Herrmann, L.F. Mockros, A mathematical analysis for indentation tests of articular cartilage, Journal of Biomechanics 5, (1972) 541–551.CrossRefGoogle Scholar
  14. 14.
    M. Schuster, C. Turecek, B. Kaiser, J. Stampfl, R. Liska, F. Varga, Evaluation of biocompatible photopolymers I: Photoreactivity and mechanical properties of reactive diluents, Journal of Macromolecular Science A44, (2007) 547–557.CrossRefGoogle Scholar
  15. 15.
    M. Schuster, C. Turecek, F. Varga, H. Lichtenegger, J. Stampfl, R. Liska, 3D-shaping of biodegradable photopolymers for hard tissue replacement, Applied Surface Science 245, (2007) 1131–1134.CrossRefGoogle Scholar
  16. 16.
    S.J. Bryant, J.L. Cuy, K.D. Hauch, B.D. Ratner, Photo-patterning of porous hydrogels for tissue engineering, Biomaterials 28 (19), (2007) 2978–2986.CrossRefGoogle Scholar
  17. 17.
    H.M. Simms, C.M. Bowman, K.S. Anseth, Using living radical polymerization to enable facile incorporation of materials in microfluidic cell culture devices, Biomaterials 29 (14), (2008) 2228–2236.CrossRefGoogle Scholar
  18. 18.
    K.T. Nguyen, J.L. West, Photopolymerizable hydrogels for tissue engineering applications, Biomaterials 23 (22), (2002) 4307–4314.CrossRefGoogle Scholar
  19. 19.
    K. Arcaute, L. Ochoa, F. Medina, C. Elkins, B. Mann, R. Wicker, Three-dimensional PEG hydrogel construct fabrication using stereolithography, Mater. Res. Soc. Symp. Proc. Vol. 874 (2005) Materials Research Society L5.5.1.Google Scholar
  20. 20.
    R. Wicker, F. Medina, K. Arcaute, L. Ochoa, C. Elkins, Hydrogel constructs using stereolithography, WO/2006/116180.Google Scholar
  21. 21.
    J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M. Spitzbart, Photopolymers with tunable mechanical properties processed by laser based high-resolution stereolithography, Journal of Micromechanics and Microengineering 18, (2008) 125014.CrossRefGoogle Scholar
  22. 22.
    A. Neumeister, R. Himmelhuber, C. Materlik, T. Temme, F. Pape, H.-H. Gatzen, A. Ostendorf, Properties of three-dimensional precision objects fabricated by using laser based micro stereolithography, Journal of Laser Micro/Nanoengineering 3 (2), (2008) 67–72.CrossRefGoogle Scholar
  23. 23.
    C. Heller, N. Pucher, B. Seidl, L. Kuna, V. Satzinger, V. Schmidt, H. Lichtenegger, J. Stampfl, R. Liska, One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift, Journal of Polymer Science: Part A: Polymer Chemistry 45, (2007) 3280–3291.CrossRefGoogle Scholar
  24. 24.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, (1999) 51–54.CrossRefGoogle Scholar
  25. 25.
    T. Watanabe, M. Akiyama, K. Totani, S.M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S.R. Marder, J.W. Perry, Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization, Advanced Functional Materials 12 (9), (2002) 611–614.CrossRefGoogle Scholar
  26. 26.
    R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering, Biomaterials 23, (2002) 4437–4447.CrossRefGoogle Scholar
  27. 27.
    N.E. Fedorovich, J.R. De Wijn, A.J. Verbout, J. Alblas, W.J.A. Dhert, Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing, Tissue Engineering Part A 14 (1), (2008) 127–133.CrossRefGoogle Scholar
  28. 28.
    M.A. Janney, O.O. Omatete, C. Walls, S.D. Nunn, R.J. Ogle, G. Westmoreland, Development of low-toxicity gelcasting systems, Journal of the American Ceramic Society 81 (3), (1998) 581–591.CrossRefGoogle Scholar
  29. 29.
    A.G. Cooper, S. Kang, J.W. Kietzman, F.B. Prinz, J.L. Lombardi, L.E. Weiss, Automated fabrication of complex molded parts using mold shape deposition manufacturing, Materials & Design 20 (2–3), (1999) 83–89.CrossRefGoogle Scholar
  30. 30.
    J. Homa, Direkte und indirekte Strukturierung von keramischen Kreuzkanalfiltern, PhD thesis, TU Wien, 2008.Google Scholar
  31. 31.
    J. Stampfl, H.C. Liu, S.W. Nam, K. Sakamoto, H. Tsuru, S. Kang, A.G. Cooper, A. Nickel, F.B. Prinz, Rapid prototyping and manufacturing by gelcasting of metallic and ceramic slurries, Materials Science and Engineering A334, (2001) 187–192.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria

Personalised recommendations