Materials for Stereolithography

  • Serge Corbel
  • Olivier Dufaud
  • Thibault Roques-Carmes


Stereolithography (SL) is a rapid prototyping method for three-dimensional polymer part fabrication [3, 34, 49, 53, 63]. The technique is based on the process of photopolymerization, in which a liquid resin is converted into a solid polymer under laser irradiation [4, 34]. The models are produced by curing successive layers of the resin material until a three-dimensional object is formed. The advantages of stereolithography are its flexibility in manufacturing parts with different geometries and dimensions, its accuracy and its quickness. The challenge is to extend the stereolithography method to directly fabricate parts with complex shapes and good mechanical properties [30, 47, 58]. Recently, polymer/ceramic composite were successively fabricated by stereolithography [29, 46, 52, 62]. The manufacturing process requires the formulation of a photoreactive medium containing a photocurable resin and powders prior to laser exposure. Once polymerized, the photopolymer constitutes a though matrix around ceramic particles.


Laser Exposure Aluminum Suspension Incident Light Beam Refractive Index Difference Suspension Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Jean François Rémy (LSGC) for the granulometric measurements.


  1. 1.
    Abe, F., Osakada, K., Shiomi, M., Uematsu, K., Matsumoto M, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology, 111(1–3), (2001), 210–213.CrossRefGoogle Scholar
  2. 2.
    Allanic A-L., P. Schaeffer, French Patent n FR2790 418-A1, (1999).Google Scholar
  3. 3.
    André J.C., A. Le Méhauté, O. De Witte, French Patent, 8, (1984), 411, 241.Google Scholar
  4. 4.
    André J.C., S. Corbel, Stéréolithographie Laser, Polytechnica, Paris, 1994, 26.Google Scholar
  5. 5.
    Bertsch A., S. Jiguet, P. Renaud, Journal of Micromechanics and Microengineering 14, (2004), 197–203.Google Scholar
  6. 6.
    Calvert P., R. Crockett, Chemistry of Materials, 9, (1997), 650–663.Google Scholar
  7. 7.
    Chartier T., C. Chaput, F. Doreau, M. Loiseau, Journal of Materials Science 37 (2002), 3141–3147.Google Scholar
  8. 8.
    Chartier T., C. Hinczewski, S. Corbel, Journal of the European Ceramic Society 19 (1999), 67–74.Google Scholar
  9. 9.
    Chartier T., M. Ferrato, J.F. Baumard, G. Coudamy, Acta Ceramica 6 (6), (1994), 17.Google Scholar
  10. 10.
    Choi, D. S., Lee, S. H., Shin, B. S., Wang, K. H., Song, Y. A., Park, S. H., Jee, H. S, Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology, Journal of Materials Processing Technology, 113, (2001), 273–279.CrossRefGoogle Scholar
  11. 11.
    Cia L., S. Mantell, D. Polla, Sensors Actuators A 94, (2001), 117–125.Google Scholar
  12. 12.
    Dhariwala B., E. Hunt, T. Boland, Tissue Engineering, 10, (2004), 1316.Google Scholar
  13. 13.
    Dufaud O., Corbel S, Oxygen diffusion in ceramics suspensions for stereolithography, The Chemical Engineering Journal, 4082, (2002), 1–8.Google Scholar
  14. 14.
    Dufaud O., H. Le Gall, S. Corbel, Trans. IChemE, Part A, Chemical Engineering and Design 83, (2005), 133–138.Google Scholar
  15. 15.
    Dufaud O., P. Marchal, S. Corbel, Journal of the European Ceramic Society 22 (2002), 2081–2092.Google Scholar
  16. 16.
    Dufaud O., S. Corbel, Chemical Engineering Journal, 92 (1–3), (2003), 55–62.Google Scholar
  17. 17.
    Dufaud, O. (2002), Prototypage rapide de composites céramiques fonctionnels, Ph.D. Thesis, Institut National Polytechnique de Lorraine, 2002.Google Scholar
  18. 18.
    Dufaud, O., Corbel S, Stereolithography of PZT ceramic suspensions, Rapid Prototyping Journal, 8(2), (2002), 83–90.CrossRefGoogle Scholar
  19. 19.
    Esposito C. Corcione, A. Greco, F. Montagna, A. Licciulli, A. Maffezzoli, Journal of Materials Science 40 (2005), 4899–4904.Google Scholar
  20. 20.
    Feng, Y., Zheng, H., Zhu, Z., Zu, F, The microstructure and electrical conductivity of aluminum alloy foams, Materials Chemistry and Physics, 78, (2002), 96–201.Google Scholar
  21. 21.
    Forouta M., B. Fallahi, S. Mottavahi, S. Mottavalli, M. Dujovny, Critical Reviews in Neurosurgery, 8, (1998), 203–208.Google Scholar
  22. 22.
    Furman M., S. Corbel, H. le Gall, O. Zahraa, M. Bouchy, Chemical Engineering Science 62, (2007), 5312–5316.Google Scholar
  23. 23.
    Furman M., S. Corbel, H. le Gall, O. Zahraa, M. Bouchy, Virtual Modeling and Rapid Manufacturing, (2005), 589–593.Google Scholar
  24. 24.
    Gerven T.V., G. Mul, J. Moulijn, A. Stankiewicz, Chemical Engineering and Processing 46, (2007), 781–789.Google Scholar
  25. 25.
    Griffith M.L., J.W. Halloran, Journal of the American Ceramic Society, 79 (10) (1996), 2601–2608.CrossRefGoogle Scholar
  26. 26.
    Griffith M.L., J.W. Halloran, Manufacturing Science and Engineering, 2, (1994), 529–534.Google Scholar
  27. 27.
    Griffith M.L., T-M Chu, W. Wagner, J.W. Halloran, Solid Freeform Fabrication Conf. (SFF’95), (1995), 31–38.Google Scholar
  28. 28.
    Griffith, M. L. (1995), Stereolithography of ceramics, Ph.D. Thesis, University of Michigan, 1995.Google Scholar
  29. 29.
    Hinczewski C., S. Corbel, T. Chartier, Journal of the European Ceramic Society 18 (1998), 583–590.CrossRefGoogle Scholar
  30. 30.
    Hinczewski C., S. Corbel, T. Chartier, Rapid Prototyping Journal, 4(3), (1998), 104.CrossRefGoogle Scholar
  31. 31.
    Hinczewski, C., Corbel, S., Chartier, T, Stereolithography for the fabrication of ceramic three-dimensional parts, Rapid Prototyping Journal, 4(3), (1998), 104–111.CrossRefGoogle Scholar
  32. 32.
    Ikuta, K., Hirowatari, K, Real three dimensional micro fabrication using stereolithography and metal molding, MEM'93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEE. (,Proceedings of IEEE Symposium, (1993), 42–47.
  33. 33.
    Im Y.G., S.I. Chung, J.H. Son, Y.D. Jung, J.G. Jo, H.D. Jeong, Journal of Materials Processing Technology 130–131, (2002), 372–377.CrossRefGoogle Scholar
  34. 34.
    Jacobs P.F., Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography (Society of Manufactuting Engineers Publishers, Deaborn, 1992).Google Scholar
  35. 35.
    Jacobs, P. F. (1996), Stereolithography and other RP&M technologies, Soc. of Manuf. Engineers, Dearborn (1996)Google Scholar
  36. 36.
    Jiang X.N., C. Sun, X. Zhang, B. Xu, Y.H. Ye, Sensors and Actuators A: 87, (2000), 72–77.CrossRefGoogle Scholar
  37. 37.
    Kindernay J., A. Blazkova, J. Ruda, V. Jancovicova, Z. Jakubicova, Journal of Photochemistry and Photobiology A: Chemistry 151, (2002), 229–236.CrossRefGoogle Scholar
  38. 38.
    Lee J.W., I.H. Lee, D.W. Cho, Microelectronic Engineering 83, Issues 4–9, (2006), 1830–1866.Google Scholar
  39. 39.
    Luo L., D. Tondeur, H. le Gall, S. Corbel, Applied Thermal Engineering 27, (2007), 1708–1714.CrossRefGoogle Scholar
  40. 40.
    Luo L., D. Tondeur, International Journal of Thermal Science 44, (2005), 1131–1141.Google Scholar
  41. 41.
    Luo L., Y. Fan, W. Zhang, X. Yuan, N. Midoux, Chemical Engineering Science 62, (2007), 3605–3619.CrossRefGoogle Scholar
  42. 42.
    Luo L., Z. Fan, H. le Gall, X. Zhou, W. Yuan, Chemical Engineering and Processing 47, (2008), 229–236.Google Scholar
  43. 43.
    Male, A. T., Chen, Y. W., Pan, C., Zhang, Y. M, Rapid prototyping of sheet metal components by plasma-jet forming, Journal of Materials Processing Technology, 135, (2003), 340–346.CrossRefGoogle Scholar
  44. 44.
    Maruo S., S. Kawata, Journal of Microelectromechanical Systems, 7 (4), (1998), 411–415.CrossRefGoogle Scholar
  45. 45.
    Mauzon A., O. Dufaud, H. Le Gall, S. Corbel, 10èmes Assises Européennes de Prototypage Rapide, 2004.Google Scholar
  46. 46.
    Monneret S., C. Provin, H. Le Gall, S. Corbel, Microsystem Technologies 8, (2002), 368–374.CrossRefGoogle Scholar
  47. 47.
    Müller, H., Sladojevic, J, Rapid tooling approaches for small lot production of sheet-metal parts, Journal of Materials Processing Technology, 115, (2001), 97–103.CrossRefGoogle Scholar
  48. 48.
    Nakagawa, T., Makinouchi, A., Wei, J., Shinizu, T, Application of laser stereolithography in FE sheet-metal forming simulation, Journal of Materials Processing Technology, 50, (1995), 318–323.CrossRefGoogle Scholar
  49. 49.
    Nee A.Y.C., J.Y.H. Fuh, T. Miyazawa, Journal of Materials Processing Technology 113, (2001), 262–268.CrossRefGoogle Scholar
  50. 50.
    Petzold R., H.F. Zeilhofer, W.A. Kalender, Computerized Medical Imaging and Graphics 23, (1999), 277–284.CrossRefGoogle Scholar
  51. 51.
    Pilgrim S.M., A.E. Bailey, M. Massouda, F.C. Poppe, A.P. Ritter, Ferroelectrics 160, (1994) 383–390.Google Scholar
  52. 52.
    Provin C., S. Monneret, IEEE Transactions on Electronics Packaging Manufacturing 25, (2002) 59–63.CrossRefGoogle Scholar
  53. 53.
    Schaeffer P., A. Bertsch, S. Corbel, J.Y. Jézéquel, J.C. Andre, Journal of Photochemistry and Photobiology A: Chemistry 107, (1997) 283–290.CrossRefGoogle Scholar
  54. 54.
    Shinizu, T., Murakoshi, Y., Wang, Z., Maeda, R., Sano, T, Microfabrication techniques for thick structure of metals and PZT, Symposium on Design, Test and Microfabrication of MEMS and MOEMS, Paris, France, SPIE vol. 3680, (1999), 72–477.Google Scholar
  55. 55.
    Sun C., N. Fang, D.M. Wu, X. Zhang, Sensors and Actuators A (2005).Google Scholar
  56. 56.
    Sun C., X. Zhang, Journal of Applied Physics 92 (8), (2002) 4796–4802.CrossRefGoogle Scholar
  57. 57.
    Tondeur D., L. Luo, Chemical Engineering Science 59, (2004) 1799–1813.CrossRefGoogle Scholar
  58. 58.
    Voelkner, W, Present and future developments of metal forming: selected examples, Journal of Materials Processing Technology, 106, (2000), 236–242.CrossRefGoogle Scholar
  59. 59.
    Wang, J., Wei, X P., Christodoulou, P., Hermanto, H. (2004), Rapid tooling for zinc spin casting using arc metal spray technology, Journal of Materials Processing Technology, 146, (2004), 283–288.CrossRefGoogle Scholar
  60. 60.
    Wu, G., Langrana, N. A., Sadanji, R., Danforth, S. (2002), Solid freeform fabrication of metal components using fused deposition of metals, Materials and Design, 23, (2002), 97–105.CrossRefGoogle Scholar
  61. 61.
    Yarlagadda, P., Ilyas, I. P., Christodoulou P. (1993), Development of rapid tooling for sheet metal drawing using nickel electroforming and stereolithography processes, Journal of Materials Processing Technology, 111, (2001), 286–294.CrossRefGoogle Scholar
  62. 62.
    Zhang X., X.N. Jiang, C. Sun, Sensors and Actuators A: 77, (1999) 149–156.CrossRefGoogle Scholar
  63. 63.
    Zissi S., A. Bertsch, J.Y. Jézéquel, S. Corbel, D.J. Lougnot, J.C. Andre, Microsystem Technologies 2, (1996) 97–102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Serge Corbel
    • 1
  • Olivier Dufaud
  • Thibault Roques-Carmes
  1. 1.Laboratoire Réactions et Génie des ProcédésUPR 3349 CNRS, Nancy-UniversitéNancy CedexFrance

Personalised recommendations