Advertisement

Polymeric Materials for Rapid Manufacturing

  • Fred J. Davis
  • Geoffrey R. Mitchell
Chapter

Abstract

Rapid Manufacturing also known as solid free-form fabrication is a term describing a range of processes whereby a computer generated design is converted to a three-dimensional (3D) object. This methodology was originally used for the manufacture of models and prototypes (hence the description “Rapid Prototyping”) [1] and has becoming an increasingly important tool for designers and manufacturers [2]; indeed in some cases this approach is being extended to the manufacture of small numbers of complex articles. One particularly exciting development is the use of Rapid Manufacturing for the production of biocompatible components for medical use, where the production of a one-off component is a necessary requirement. Examples include the manufacture of dental prostheses [3] and hip joints [4].

Keywords

Vinyl Ether Selective Laser Sinter Fuse Deposition Modeling Phenol Formaldehyde Resin Negative Photoresist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. Gibson and D. Shi, Material properties and fabrication parameters in selective sintering process, Rapid Prototyping Journal, 3, 129–136, 1997.CrossRefGoogle Scholar
  2. 2.
    R.M. Miranda, G. Lopes, L. Quintino, J.P. Rodrigues, and S. Williams, Rapid prototyping with high power fiber lasers, Materials and Design 29, 2072–2075, 2008.CrossRefGoogle Scholar
  3. 3.
    B. Vandenbroucke and J.-P. Kruth in “Bio-Materials and Prototyping Applications in Medicine”, Eds P. Bartolo and B. Bidanda, Springer, NY, Pages 109–124, 2008.Google Scholar
  4. 4.
    A.G. Mamalis, J.J. Ramsden, A.I. Grabchenko, L.A. Lytvynov, V.A. Filipenko and S.N. Lavrynenko, A novel concept for the manufacture of individual sapphire-metallic hip joint endoprostheses, Journal of Biological Physics and Chemistry, 6, 113–117, 2006.CrossRefGoogle Scholar
  5. 5.
    S. Yang, and J.R.G. Evans, Metering and dispensing of powder; the quest for new solid free-forming techniques, Powder Technology 178, 56–72, 2007.CrossRefGoogle Scholar
  6. 6.
    P. Calvert, Freeforming of polymers. Current Opinion in Solid State and Materials Science, 3: 585–588, 1998.CrossRefGoogle Scholar
  7. 7.
    M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Direct selective laser sintering of metals, Rapid Prototyping Journal 1, 26–36, 1995.CrossRefGoogle Scholar
  8. 8.
    W. Höland, V. Rheinberger, E. Apel, C. van’t Hoen, Principles and phenomena of bioengineering with glass-ceramics for dental restoration, Journal of the European Ceramic Society, 27 (2007) 1521–1526.CrossRefGoogle Scholar
  9. 9.
    A. del Campo and E. Arzt, Fabrication approaches for generating complex micro and nanopatterns on surfaces, Chemical Reviews, 108 (2008), 911–945.CrossRefGoogle Scholar
  10. 10.
    M.P. Stevens, Polymer Chemistry an Introduction, 2nd Edition, OUP, New York, 1990.Google Scholar
  11. 11.
    W.H. Carothers, Journal of the American Chemical Society, 51(8), 2548–2559, 1929.CrossRefGoogle Scholar
  12. 12.
    S.S. Morye, P.J. Hine, R.A. Duckett, D.J. Carr, I.M. Ward. A comparison of the properties of hot compacted gel-spun polyethylene fibre composites with conventional gel-spun polyethylene fibre composites. Composites: Part A 30, 649–660, 1999.CrossRefGoogle Scholar
  13. 13.
    N.S. Allen, J.P. Hurley, G. Pullen, A. Rahman, M. Edge, G.W. Follows, F. Catalina, and I. Weddell, in Current Trends in Polymer Photochemistry, Ed. N.S. Allen, M. Edge, I.R. Bellobono, and E. Selli, Ellis Horwood, Hemel Hempstead, 1995.Google Scholar
  14. 14.
    N.S. Allen, Photoinitiators for UV and visible curing of coatings, mechanisms and properties, Journal of Photochemistry and Photobiology A: Chemistry 100, 101–107, 1996.CrossRefGoogle Scholar
  15. 15.
    N.J. Mills, Plastics, Microstructure and Engineering Applications, 2nd Edition, Hodder, London, 123–125, 1993.Google Scholar
  16. 16.
    N. S. Allen, M. C. Marin, M. Edge, D. W. Davies, J. Garrett, F. Jones, S. Navaratnam, and B. J. Parsons, Journal of Photochemistry and Photobiology A: Chemistry, 1999, 126, 135–149.CrossRefGoogle Scholar
  17. 17.
    R. E. Kerby, L. A. Knobloch, S. Schricker, and B. Gregg, Dental Materials, 25, 302–313, 2009.CrossRefGoogle Scholar
  18. 18.
    C. Decker, Progress in Polymer Science, 21, 593–650, 1996.CrossRefGoogle Scholar
  19. 19.
    J. V. Crivello, Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37, 4241–4254.CrossRefGoogle Scholar
  20. 20.
    C. Decker and D. Decker, Polymer, 38(9), 2229–2237, 1997.CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. V. Crivello, Nuclear Instruments and Methods in Physics Research B 151, 8–21, 1999.CrossRefGoogle Scholar
  22. 22.
    P. Eyerer, B. Wiedemann, K.-H. Duel, B. Keller, Computers in Industry 28, 35–45, 1995.CrossRefGoogle Scholar
  23. 23.
    K. Suyama, and M. Shirai, Progress in Polymer Science, 2009, 34, 194–209.CrossRefGoogle Scholar
  24. 24.
    H. Du and M.K. Boyd, The 9-xanthenylmethyl group: a novel photocleavable protecting group for amines. Tetrahedron Letters, 42, 6645–6647, 2001.CrossRefGoogle Scholar
  25. 25.
    T. Ohba, T. Shimizu, K. Suyama, and M. Shirai,. Photocrosslinking and redissolution properties of oligomers bearing photoamine generating groups and epoxy groups, Journal of Photopolymer Science and Technology, 18, 221–224, 2005.CrossRefGoogle Scholar
  26. 26.
    Y. Yamaguchi, B.J. Palmer, C. Kutal, T. Wakamatsu, and D.B. Yang, Ferrocenes as anionic photoinitiators. Macromolecules, 31, 5155–5157, 1998.CrossRefGoogle Scholar
  27. 27.
    R. Balajia, D. Grande, and S. Nanjundan, Reactive and Functional Polymers, 56, 45–57, 2003.CrossRefGoogle Scholar
  28. 28.
    V. Ramamurthy and K. Venkatesan, Photochemical reactions of organic crystals, Chemical Review 87, 433–481, 1987.CrossRefGoogle Scholar
  29. 29.
    Y. Xia and G.M. Whitesides, Soft lithography, Angewandte Chemie (International Ed. in English), 37, 550–575, 1998.CrossRefGoogle Scholar
  30. 30.
    J. Rickerby and J. H. G. Steinke, Current trends in patterning with copper, Chemical Review, 102, 1525–1549, 2002.CrossRefGoogle Scholar
  31. 31.
    D. Figeys, and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences, Analytical Chemistry, 72 (9), 330A–335A, 2000.CrossRefGoogle Scholar
  32. 32.
    G. Wallraff and W.D. Hinsberg, Lithographic imaging techniques for the formation of nanoscopic features, Chemical Review, 1999, 99, 1801–1821.CrossRefGoogle Scholar
  33. 33.
    M. Chanda, and S. Roy, 2006. Plastics Technology Handbook, 4th ed. CRC Press, Boca Raton, P4–53, 2006.CrossRefGoogle Scholar
  34. 34.
    G. Rabilloud, High-Performance Polymers.Vol 3, Polyimides for Electronics, Technip Paris, 2000 P165 – 234.Google Scholar
  35. 35.
    J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, and S. J. Holmes, Negative photoresists for optical lithography, IBM Journal of Research and Development, 41, 81–94, 1997.CrossRefGoogle Scholar
  36. 36.
    A. Reiser; G. Bowes; R. Horne, Photolysis of aromatic azides, Transactions of the Faraday Society, 66, 3194, 1967.Google Scholar
  37. 37.
    H Lorenz, M Despont, N Fahrni, N LaBianca, P Renaud, and P Vettiger. SU-8: a low-cost negative resist for MEMS, Journal of Micromechanics and Microengineering, 7, 121–124, 1997.CrossRefGoogle Scholar
  38. 38.
    S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C. R. Bowen, M. Willander, Q. Ul Wahab, M. Willander, S. M. Al-hillie, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel k,10, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, and K. Persson, New materials for micro-scale sensors and actuators: An engineering review, Materials Science and Engineering, R 56, 1–129, 2007.Google Scholar
  39. 39.
    X. Yan and P. Gu, A review of rapid prototyping technologies and systems, Computer Aided Design, 26, 307–318, 1996.CrossRefGoogle Scholar
  40. 40.
    C. Decker in Radiation Curing in Polymer Science and Technology 3, ed. J. P. Fouassier and J. F. Rabek, Elsevier, Chichester (1993). 1993 Chapter 2 33–64.Google Scholar
  41. 41.
    J.S. Ulletta, T. Benson-Tolle, J.W. Schultz, and R.P. Chartoff, Materials and Design, 20, 91–97, 1999.CrossRefGoogle Scholar
  42. 42.
    U. Bulut, and J.V. Crivello, Investigation of the reactivity of epoxide monomers in photoinitiated cationic polymerization, Macromolecules, 2005, 38, 3584–3595.CrossRefGoogle Scholar
  43. 43.
    U. Bulut, and J.V. Crivello, Reactivity of oxetane monomers in photoinitiated cationic polymerization, Journal of Polymer Science, Part A, Polymer Chemistry, 2005, 43, 3205–3220.CrossRefGoogle Scholar
  44. 44.
    W. L. Wang, C. M. Cheah, J. Y. H. Fuh, and L. Lu, Influence of process parameters on stereolithography part shrinkage, Materials and Design, 17, 205–213, 1996.CrossRefMATHGoogle Scholar
  45. 45.
    L. Lecamp, B. Youssef, C. Bunel, and P. Lebaudy, Photoinitiated polymerization of a dimethacrylate oligomer Part 3 Postpolymerization study, Polymer, 40, 6313–6320, 1999.CrossRefGoogle Scholar
  46. 46.
    J.-P. Kruth, M.C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, Annals of the ClRP, 47, 525–540, 1998.CrossRefGoogle Scholar
  47. 47.
    M. Wozniak, T. Graule, Y. de Hazan, D. Kata, and J. Lis, Highly loaded UV curable nanosilica dispersions for rapid prototyping applications, Journal of the European Ceramic Society in Press.Google Scholar
  48. 48.
    D. Karalekas and K. Antoniou, Composite rapid prototyping: overcoming the drawback of poor mechanical properties, Journal of Materials Processing Technology 2004, 153–154, 526–530.CrossRefGoogle Scholar
  49. 49.
    A. Rosochowski, A. Matuszak, Rapid tooling: the state of the art, Journal of Materials Processing Technology, 2000, 106, 191–198.CrossRefGoogle Scholar
  50. 50.
    V. E. Beal, C. H. Ahrens, and P. A. Wendhausen, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26, 40–46, 2004.CrossRefGoogle Scholar
  51. 51.
    J.C. Nelson, N.K. Vail, J.W. Barlow, J.J. Beaman, D.L. Bourell, and H.L. Marcuss, Selective laser sintering of polymer-coated silicon carbide powders, Industrial and Engineering Chemistry Research, 34, 1641–1651, 1995.CrossRefGoogle Scholar
  52. 52.
    H.C.H. Ho, I. Gibson, and W.L. Cheung, Effects of energy density on morphology and properties of selective laser sintered polycarbonate, Journal of Materials Processing Technology, 89–90, 204–210, 1999.CrossRefGoogle Scholar
  53. 53.
    J. Yang, Y. Shi, Q. Shen, and C. Yan, Selective laser sintering of HIPS and investment casting technology, Journal of Materials Processing Technology, 209, 1901–1908, 2009.CrossRefGoogle Scholar
  54. 54.
    B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology, 182, 477–488, 2007.CrossRefGoogle Scholar
  55. 55.
    N.K. Vail, L.D. Swain, W.C. Fox, T.B. Aufdlemorte, G. Lee, and J.W. Barlow, Materials for biomedical applications, Materials and Design, 20, 123–132, 1999.CrossRefGoogle Scholar
  56. 56.
    J.L. Lombardi and P. Calvert, Extrusion freeforming of Nylon 6 materials, Polymer, 1999, 40, 1775–1779.CrossRefGoogle Scholar
  57. 57.
    S.H. Masood and W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling, Materials and Design 2004, 25, 587–594.CrossRefGoogle Scholar
  58. 58.
    J. Mateus, H.A. Almeida, N.M. Ferreira, N.M. Alves, P.J. Bartolo, C.M. Mota, and J.P. de SousaVirtual and Rapid Manufacturing: Advanced Research in Virtual and Rapid Prototyping ed P.J. Bartolo, Taylor and Francis, London, 171–175, 2008.Google Scholar
  59. 59.
    C. Zhang, X. Wen, N.R. Vyavahare, and T. Boland, Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique, Biomaterials, 29, 3781–3791, 2008.CrossRefGoogle Scholar
  60. 60.
    G. Vozzi and A. Ahluwalia, Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach, Journal of Material Chemisty, 17, 1248–1254, 2007.CrossRefGoogle Scholar
  61. 61.
    K-S. Lee, R.H. Kim, D-Y. Yang, and S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization, Progress in Polymer Science, 33, 631–681, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Rapid and Sustainable Product DevelopmentPolytechnic Institute of LeiriaLeiriaPortugal

Personalised recommendations